1
|
Barrett KC, Jiradejvong P, Jacobs L, Limb CJ. Children engage neural reward structures for creative musical improvisation. Sci Rep 2025; 15:11346. [PMID: 40210657 PMCID: PMC11986006 DOI: 10.1038/s41598-025-95619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
Children spontaneously engage in creative behaviors. However, little is known about the biological underpinnings of creativity in children. We identified neural substrates associated with musical improvisation in children aged 9-11. Participants played a non-ferromagnetic piano keyboard in a functional magnetic resonance imaging (fMRI) scanner using a musical paradigm that required no prior musical experience, in which they played a rote pattern from memory or improvised melodies using those same notes. fMRI analysis of children's brains during musical improvisation revealed (1) heightened functional connectivity between emotion and reward brain areas and (2) deactivation of auditory, limbic, and parietal structures, particularly the middle temporal gyrus, angular gyrus, precuneus, and cingulate cortex. Importantly, improvisation engaged reward structures more than the control condition. Neural results suggest that children possess nascent creativity networks that form the roots for later adult creativity networks.
Collapse
Affiliation(s)
- Karen Chan Barrett
- Sound and Music Perception Lab, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA.
- Institute for Health and Aging, School of Nursing, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Patpong Jiradejvong
- Sound and Music Perception Lab, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Lauren Jacobs
- Sound and Music Perception Lab, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Charles J Limb
- Sound and Music Perception Lab, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA
| |
Collapse
|
2
|
Tokatly Latzer I, Pearl PL. Creativity and its link to epilepsy. Epilepsia Open 2024. [PMID: 39589388 DOI: 10.1002/epi4.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Creative thinking represents one of our highest-order cognitive processes, involving multiple cortical structures and an intricate interplay between several cortical and subcortical networks. It results in novel ideas that translate to useful products or concepts. The evolutionary purpose of creativity is therefore apparent, as it advances our adaptation and survival. Elucidating the neurobiology and neuroanatomy of creative cognition is challenging because the construct of creativity is not clearly defined, and the many neuropsychological measures attempting to assess it are often biased, leading to imprecise findings. Using examples from the medical and music fields, creativity is demonstrably linked to the default mode network (DMN), which has the unique property of becoming activated at times of "quiet wakefulness," facilitating "defaulted" internally focused cognitive operations. Creative thoughts result from a process involving the activation and deactivation of the DMN as part of a dynamic interplay shared with the central executive network and affective salience network. The question is posed whether seizures originating from DMN-related cortical areas should be considered as having overlap with eloquent cortex, potentially exempting them from removal in epilepsy surgery. PLAIN LANGUAGE SUMMARY: Creative thinking is a higher-order cognitive process involving multiple brain structures and networks. It results in insightful and original thoughts that translate to useful products or concepts, which allow us to adapt to our surroundings. This Narrative Review presents conceptual, investigational, and neurobiological aspects of creativity, including information about a unique brain network termed "default mode network (DMN)," which activates at times of "quiet wakefulness," facilitating internally focused cognitive operations. The review ends with a discussion on whether regions of the DMN from which seizures originate should be regarded as "eloquent" and their removal should be deferred by epilepsy surgery.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sun L, Wang Q, Ai J. The underlying roles and neurobiological mechanisms of music-based intervention in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 96:102265. [PMID: 38479478 DOI: 10.1016/j.arr.2024.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Non-pharmacological therapy has gained popularity in the intervention of Alzheimer's disease (AD) due to its apparent therapeutic effectiveness and the limitation of biological drug. A wealth of research indicates that music interventions can enhance cognition, mood and behavior in individuals with AD. Nonetheless, the underlying mechanisms behind these improvements have yet to be fully and systematically delineated. This review aims to holistically review how music-based intervention (MBI) ameliorates abnormal emotion, cognition decline, and behavioral changes in AD patients. We cover several key dimensions: the regulation of MBIs on cerebral blood flow (CBF), their impact on neurotransmission (including GABAergic and monoaminergic transmissions), modulation of synaptic plasticity, and hormonal release. Additionally, we summarize the clinical applications and limitations of active music-based intervention (AMBI), passive music-based intervention (PMBI), and hybrid music-based intervention (HMBI). This thorough analysis enhances our understanding of the role of MBI in AD and supports the development of non-pharmacological therapeutic strategies.
Collapse
Affiliation(s)
- Liyang Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Qin Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, Harbin 150086, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China; Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, Harbin 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, 157 Baojian Road, Harbin 150086, China.
| |
Collapse
|
4
|
Maidhof C, Müller V, Lartillot O, Agres K, Bloska J, Asano R, Odell-Miller H, Fachner J. Intra- and inter-brain coupling and activity dynamics during improvisational music therapy with a person with dementia: an explorative EEG-hyperscanning single case study. Front Psychol 2023; 14:1155732. [PMID: 37842703 PMCID: PMC10570426 DOI: 10.3389/fpsyg.2023.1155732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Real-life research into the underlying neural dynamics of improvisational music therapy, used with various clinical populations, is largely lacking. This single case study explored within-session differences in musical features and in within- and between-brain coupling between a Person with Dementia (PwD) and a music therapist during a music therapy session. Methods Dual-EEG from a music therapist and a PwD (male, 31 years) was recorded. Note density, pulse clarity and synchronicity were extracted from audio-visual data. Three music therapists identified moments of interest and no interest (MOI/MONI) in two drum improvisations. The Integrative Coupling Index, reflecting time-lagged neural synchronization, and musical features were compared between the MOI and MONI. Results Between-brain coupling of 2 Hz activity was increased during the MOI, showing anteriority of the therapist's neural activity. Within-brain coupling for the PwD was stronger from frontal and central areas during the MOI, but within-brain coupling for the therapist was stronger during MONI. Differences in musical features indicated that both acted musically more similar to one another during the MOI. Conclusion Within-session differences in neural synchronization and musical features highlight the dynamic nature of music therapy. Significance The findings contribute to a better understanding of social and affective processes in the brain and (interactive) musical behaviors during specific moments in a real-life music therapy session. This may provide insights into the role of such moments for relational-therapeutic processes.
Collapse
Affiliation(s)
- Clemens Maidhof
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Olivier Lartillot
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Kat Agres
- Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore, Singapore
- Centre for Music and Health, National University of Singapore, Singapore, Singapore
| | - Jodie Bloska
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rie Asano
- Institute of Musicology, University of Cologne, Cologne, Germany
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Helen Odell-Miller
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Jörg Fachner
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| |
Collapse
|
5
|
Mellerio C, de Parcevaux AI, Charron S, Etevenon P, Oppenheim C. Functional MRI of a conductor in action. J Neuroradiol 2023; 50:278-279. [PMID: 36623585 DOI: 10.1016/j.neurad.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Affiliation(s)
- Charles Mellerio
- Neuroradiology Department, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, France; INSERM U1266, Paris, France, Université Paris Cité, France.
| | - Anne Isabelle de Parcevaux
- Conservatoire National Supérieur de Musique et de Danse de Paris, 209, Avenue Jean-Jaurès, 75019, Paris, France
| | | | | | - Catherine Oppenheim
- Neuroradiology Department, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, France; INSERM U1266, Paris, France, Université Paris Cité, France
| |
Collapse
|
6
|
Gopan K G, Reddy SA, Rao M, Sinha N. Analysis of single channel electroencephalographic signals for visual creativity: A pilot study. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Farrugia N, Lamouroux A, Rocher C, Bouvet J, Lioi G. Beta and Theta Oscillations Correlate With Subjective Time During Musical Improvisation in Ecological and Controlled Settings: A Single Subject Study. Front Neurosci 2021; 15:626723. [PMID: 34177443 PMCID: PMC8222590 DOI: 10.3389/fnins.2021.626723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
In this paper, we describe the results of a single subject study attempting at a better understanding of the subjective mental state during musical improvisation. In a first experiment, we setup an ecological paradigm measuring EEG on a musician in free improvised concerts with an audience, followed by retrospective rating of the mental state of the improviser. We introduce Subjective Temporal Resolution (STR), a retrospective rating assessing the instantaneous quantization of subjective timing of the improviser. We identified high and low STR states using Hidden Markov Models in two performances, and were able to decode those states using supervised learning on instantaneous EEG power spectrum, showing increases in theta and alpha power with high STR values. In a second experiment, we found an increase of theta and beta power when experimentally manipulating STR in a musical improvisation imagery experiment. These results are interpreted with respect to previous research on flow state in creativity, as well as with the temporal processing literature. We suggest that a component of the subjective state of musical improvisation may be reflected in an underlying mechanism related to the subjective quantization of time. We also demonstrate the feasibility of single case studies of musical improvisation using brain activity measurements and retrospective reports, by obtaining consistent results across multiple sessions.
Collapse
Affiliation(s)
| | | | | | - Jules Bouvet
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest, France
| | - Giulia Lioi
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest, France
| |
Collapse
|
8
|
Saggar M, Volle E, Uddin LQ, Chrysikou EG, Green AE. Creativity and the brain: An editorial introduction to the special issue on the neuroscience of creativity. Neuroimage 2021; 231:117836. [PMID: 33549759 DOI: 10.1016/j.neuroimage.2021.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Manish Saggar
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Emmanuelle Volle
- Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Paris, France
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | | | - Adam E Green
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|