1
|
Li B, Pan J, Zhang R, Han B, Zhao Y, Liu G, Tong Y, He Y, Xie G, Liu R, Zhou T, Zhang Q, Sun SK. Vascular magnifier for ultrahigh-resolution visualization of cerebral vessels in vivo. Biomaterials 2025; 322:123356. [PMID: 40311521 DOI: 10.1016/j.biomaterials.2025.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/21/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
High-resolution vascular imaging at tens of micrometers in deep tissues in vivo remains a critical challenge. Ultrahigh field susceptibility-weighted imaging (SWI) holds promise but lacking compatible high-sensitivity imaging probes. Herein, we show a holmium (Ho)-based nanoprobe-enhanced SWI strategy for ultrahigh-resolution imaging of cerebral microvessels at 9.4 T. The polyethylene glycol (PEG)-NaHoF4 nanoparticles (NPs) fabricated via coprecipitation synthesis combined with PEG modification possess uniform size, appropriate hydrodynamic size (20 nm), good biocompatibility, and long circulation half-life (710 min). Notably, the PEG-NaHoF4 NPs exhibit high r2/r1 (742.7) and T2∗ relaxivity (r2∗, 73.16 s-1 mM-1) under 9.4 T due to the large magnetic moment (∼10.6 μB) and short electronic relaxation time (∼10-13 s) of Ho3+. The high susceptibility of PEG-NaHoF4 NPs in blood vessels induces a significant blooming effect, resulting in a magnified vascular appearance on SWI. In vivo high-resolution imaging of cerebral microvessels with diameters as small as 10 μm is achieved using PEG-NaHoF4 NPs-enhanced SWI under 9.4 T. In two representative brain disease models, glioma and stroke, this nanoprobe enables high-resolution visualization of tumor vasculature and post-stroke collateral circulation, respectively. Our study offers a new paradigm for precise diagnosis of vascular-related diseases, providing a robust tool for their diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Ruijie Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Bing Han
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Yujie Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guijun Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yujie Tong
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yujing He
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Guangchao Xie
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Ruxia Liu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Ting Zhou
- Department of CT, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi Province, China.
| | - Quan Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
2
|
Na L, Song X, Luo P, Su J, Yao Z. Innovative applications of advanced nanomaterials in cerebrovascular imaging. Front Bioeng Biotechnol 2025; 12:1456704. [PMID: 39911816 PMCID: PMC11794002 DOI: 10.3389/fbioe.2024.1456704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Cerebrovascular imaging is essential for the diagnosis, treatment, and prognosis of cerebrovascular disease, including stroke, aneurysms, and vascular malformations. Conventional imaging techniques such as MRI, CT, DSA and ultrasound have their own strengths and limitations, particularly in terms of resolution, contrast and safety. Recent advances in nanotechnology offer new opportunities for improved cerebrovascular imaging. Nanomaterials, including metallic nanoparticles, magnetic nanoparticles, quantum dots, carbon-based nanomaterials, and polymer nanoparticles, show great potential due to their unique physical, chemical, and biological properties. This review summarizes recent advances in advanced nanomaterials for cerebrovascular imaging and their applications in various imaging techniques, and discusses challenges and future research directions. The aim is to provide valuable insights for researchers to facilitate the development and clinical application of these innovative nanomaterials in cerebrovascular imaging.
Collapse
Affiliation(s)
- Li Na
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| | - Xiaofu Song
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| | - Ping Luo
- Liaoning Provincial People’s Hospital, China Medical University, Shenyang, China
| | - Jingqi Su
- Liaoning Provincial People’s Hospital, China Medical University, Shenyang, China
| | - Zhicheng Yao
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| |
Collapse
|
3
|
Zhang P, Li Y, Li X, Wang Y, Lin H, Zhang N, Li W, Jing L, Jiao M, Luo X, Hou Y. Shedding light on vascular imaging: the revolutionary role of nanotechnology. J Nanobiotechnology 2024; 22:757. [PMID: 39695727 DOI: 10.1186/s12951-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Vascular dysfunction, characterized by changes in anatomy, hemodynamics, and molecular expressions of vasculatures, is closely linked to the onset and development of diseases, emphasizing the importance of its detection. In clinical practice, medical imaging has been utilized as a significant tool in the assessment of vascular dysfunction, however, traditional imaging techniques still lack sufficient resolution for visualizing the complex microvascular systems. Over the past decade, with the rapid advancement of nanotechnology and the emergence of corresponding detection facilities, engineered nanomaterials offer new alternatives to traditional contrast agents. Compared with conventional small molecule counterparts, nanomaterials possess numerous advantages for vascular imaging, holding the potential to significantly advance related technologies. In this review, the latest developments in nanotechnology-assisted vascular imaging research across different imaging modalities, including contrast-enhanced magnetic resonance (MR) angiography, susceptibility-weighted imaging (SWI), and fluorescence imaging in the second near-infrared window (NIR-II) are summarized. Additionally, the advancements of preclinical and clinical studies related to these nanotechnology-enhanced vascular imaging approaches are outlined, with subsequent discussion on the current challenges and future prospects in both basic research and clinical translation.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoqi Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yudong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hua Lin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenyue Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Sun Z, Li C, Muccio M, Jiang L, Masurkar A, Buch S, Chen Y, Zhang J, Haacke EM, Wisniewski T, Ge Y. Vascular Aging in the Choroid Plexus: A 7T Ultrasmall Superparamagnetic Iron Oxide (USPIO)-MRI Study. J Magn Reson Imaging 2024; 60:2564-2575. [PMID: 38587279 PMCID: PMC11458823 DOI: 10.1002/jmri.29381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE Prospective. SUBJECTS Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Arjun Masurkar
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Departments of Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Li Y, Li W, Paez A, Cao D, Sun Y, Gu C, Zhang K, Miao X, Liu P, Li W, Pillai JJ, Lu H, van Zijl PCM, Earley C, Li X, Hua J. Imaging arterial and venous vessels using Iron Dextran enhanced multi-echo 3D gradient echo MRI at 7T. NMR IN BIOMEDICINE 2024; 37:e5251. [PMID: 39187441 DOI: 10.1002/nbm.5251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Iron Dextran is a widely used iron oxide compound to treat iron-deficiency anemia patients in the clinic. Similar to other iron oxide compounds such as Ferumoxytol, it can also be used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent due to its strong iron-induced T2 and T2* shortening effects. In this study, we seek to evaluate the feasibility of using Iron Dextran enhanced multi-echo susceptibility weighted imaging (SWI) MRI at 7T to image arterial and venous blood vessels in the human brain. Phantom experiments were performed to measure the r2* relaxivity for Iron Dextran in blood, based on which the SWI sequence was optimized. Pre- and post-infusion MR images were acquired in human subjects from which maps of arteries and veins were extracted. The post-contrast SWI images showed enhanced susceptibility difference between blood and the surrounding tissue in both arteries and veins. Our results showed that the proposed Iron Dextran enhanced multi-echo SWI approach allowed the visualization of blood vessels with diameters down to ~100 μm, including small blood vessels supplying and draining small brain structures such as the hippocampus. We conclude that Iron Dextran can be an alternative iron-based MRI contrast agent for blood vessel imaging in the human brain.
Collapse
Affiliation(s)
- Yinghao Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wei Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology, Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child, Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Di Cao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuanqi Sun
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chunming Gu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kaihua Zhang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xinyuan Miao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenbo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay J Pillai
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Bing Y, Józsa TI, Payne SJ. Parameter quantification for oxygen transport in the human brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108433. [PMID: 39362064 DOI: 10.1016/j.cmpb.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Oxygen is carried to the brain by blood flow through generations of vessels across a wide range of length scales. This multi-scale nature of blood flow and oxygen transport poses challenges on investigating the mechanisms underlying both healthy and pathological states through imaging techniques alone. Recently, multi-scale models describing whole brain perfusion and oxygen transport have been developed. Such models rely on effective parameters that represent the microscopic properties. While parameters of the perfusion models have been characterised, those for oxygen transport are still lacking. In this study, we set to quantify the parameters associated with oxygen transport and their uncertainties. METHODS Effective parameter values of a continuum-based porous multi-scale, multi-compartment oxygen transport model are systematically estimated. In particular, geometric parameters that capture the microvascular topologies are obtained through statistically accurate capillary networks. Maximum consumption rates of oxygen are optimised to uniquely define the oxygen distribution over depth. Simulations are then carried out within a one-dimensional tissue column and a three-dimensional patient-specific brain mesh using the finite element method. RESULTS Effective values of the geometric parameters, vessel volume fraction and surface area to volume ratio, are found to be 1.42% and 627 [mm2/mm3], respectively. These values compare well with those acquired from human and monkey vascular samples. Simulation results of the one-dimensional tissue column show qualitative agreement with experimental measurements of tissue oxygen partial pressure in rats. Differences between the oxygenation level in the tissue column and the brain mesh are observed, which highlights the importance of anatomical accuracy. Finally, one-at-a-time sensitivity analysis reveals that the oxygen model is not sensitive to most of its parameters; however, perturbations in oxygen solubilities and plasma to whole blood oxygen concentration ratio have a considerable impact on the tissue oxygenation. CONCLUSIONS The findings of this study demonstrate the validity of using a porous continuum approach to model organ-scale oxygen transport and draw attention to the significance of anatomy and parameters associated with inter-compartment diffusion.
Collapse
Affiliation(s)
- Yun Bing
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Tamás I Józsa
- Centre for Computational Engineering Sciences, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK.
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Zhao Y, Pan J, Han B, Hou W, Li B, Wang J, Wang G, He Y, Ma M, Zhou J, Yu C, Sun SK. Ultrahigh-Resolution Visualization of Vascular Heterogeneity in Brain Tumors via Magnetic Nanoparticles-Enhanced Susceptibility-Weighted Imaging. ACS NANO 2024; 18:21112-21124. [PMID: 39094075 DOI: 10.1021/acsnano.4c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The precise assessment of vascular heterogeneity in brain tumors is vital for diagnosing, grading, predicting progression, and guiding treatment decisions. However, currently, there is a significant shortage of high-resolution imaging approaches. Herein, we propose a contrast-enhanced susceptibility-weighted imaging (CE-SWI) utilizing the minimalist dextran-modified Fe3O4 nanoparticles (Dextran@Fe3O4 NPs) for ultrahigh-resolution mapping of vasculature in brain tumors. The Dextran@Fe3O4 NPs are prepared via a facile coprecipitation method under room temperature, and exhibit small hydrodynamic size (28 nm), good solubility, excellent biocompatibility, and high transverse relaxivity (r2*, 159.7 mM-1 s-1) under 9.4 T magnetic field. The Dextran@Fe3O4 NPs-enhanced SWI can increase the contrast-to-noise ratio (CNR) of cerebral vessels to 2.5 times that before injection and achieves ultrahigh-spatial-resolution visualization of microvessels as small as 0.1 mm in diameter. This advanced imaging capability not only allows for the detailed mapping of both enlarged peritumoral drainage vessels and the intratumoral microvessels, but also facilitates the sensitive imaging detection of vascular permeability deterioration in a C6 cells-bearing rat glioblastoma model. Our proposed Dextran@Fe3O4 NPs-enhanced SWI provides a powerful imaging technique with great clinical translation potential for the precise theranostics of brain tumors.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bing Han
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| | - Yujing He
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| |
Collapse
|
8
|
Sun Z, Li C, Wisniewski TW, Haacke EM, Ge Y. In Vivo Detection of Age-Related Tortuous Cerebral Small Vessels using Ferumoxytol-enhanced 7T MRI. Aging Dis 2024; 15:1913-1926. [PMID: 38270121 PMCID: PMC11272199 DOI: 10.14336/ad.2023.1110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024] Open
Abstract
Histopathological studies suggest that cerebral small vessel tortuosity is crucial in age-related blood flow reduction and cellular degeneration. However, in vivo evidence is lacking. Here, we used Ferumoxytol-enhanced 7T MRI to directly visualize cerebral small vessels (<300 µm), enabling the identification of vascular tortuosity and exploration of its links to age, tissue atrophy, and vascular risk factors. High-resolution 2D/3D gradient echo MRI at 7T enhanced with Ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO), was obtained and analyzed for cerebral small medullary artery tortuosity from 37 healthy participants (21-70 years; mean/SD: 38±14 years; 19 females). Tortuous artery count and tortuosity indices were compared between young and old groups. Age effects on vascular tortuosity were examined through partial correlations and multiple linear regression, adjusting for sex, body mass index (BMI), blood pressure (BP), and other vascular risk factors. Associations between tortuous medullary arteries and tissue atrophy, perivascular spaces (PVS), and white matter (WM) hyperintensities were explored. Age and BMI, rather than BP, showed positive correlations with both tortuous artery count and tortuosity indices. A significant correlation existed between the number of tortuous arteries and WM atrophy. WM lesions were found in proximity to or at the distal ends of tortuous medullary arteries, especially within the deep WM. Moreover, the elderly population displayed a higher prevalence of PVS, including those containing enclosed tortuous arteries. Leveraging the blooming effect of Ferumoxytol, 7T MRI excels in directly detecting cerebral small arterial tortuosity in vivo, unveiling its associations with age, BMI, tissue atrophy, WMH and PVS.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA.
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA.
| | - Thomas W Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA.
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Stige KE, Kverneng SU, Sharma S, Skeie GO, Sheard E, Søgnen M, Geijerstam SA, Vetås T, Wahlvåg AG, Berven H, Buch S, Reese D, Babiker D, Mahdi Y, Wade T, Miranda GP, Ganguly J, Tamilselvam YK, Chai JR, Bansal S, Aur D, Soltani S, Adams S, Dölle C, Dick F, Berntsen EM, Grüner R, Brekke N, Riemer F, Goa PE, Haugarvoll K, Haacke EM, Jog M, Tzoulis C. The STRAT-PARK cohort: A personalized initiative to stratify Parkinson's disease. Prog Neurobiol 2024; 236:102603. [PMID: 38604582 DOI: 10.1016/j.pneurobio.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is ∼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.
Collapse
Affiliation(s)
- Kjersti Eline Stige
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway; The Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway; Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim 7006, Norway
| | - Simon Ulvenes Kverneng
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Soumya Sharma
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Geir-Olve Skeie
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Erika Sheard
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Mona Søgnen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Solveig Af Geijerstam
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Therese Vetås
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Anne Grete Wahlvåg
- Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim 7006, Norway
| | - Haakon Berven
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - David Reese
- Imaging Research Laboratories, Robarts Research Institute, Ontario, London N6A 5B7, Canada
| | - Dina Babiker
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Yekta Mahdi
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Trevor Wade
- Department of Medical Biophysics, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, Ontario, London N6A 6B7, Canada
| | - Gala Prado Miranda
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Jacky Ganguly
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Yokhesh Krishnasamy Tamilselvam
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada; Department of Electrical and Computer Engineering, Canadian Surgical Technologies and Advanced Robotics (CSTAR), University of Western Ontario (UWO), Ontario, London, Canada
| | - Jia Ren Chai
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Saurabh Bansal
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Dorian Aur
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Sima Soltani
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Scott Adams
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada; School of Communication Sciences & Disorders, Faculty of Health Sciences, Western University, Canada
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Fiona Dick
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim 7006, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Renate Grüner
- Department of Physics and Technology, University of Bergen, Bergen 5007, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Post Office Box 1400, Bergen 5021, Norway
| | - Njål Brekke
- Department of Physics and Technology, University of Bergen, Bergen 5007, Norway; Radiology Department, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Frank Riemer
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Post Office Box 1400, Bergen 5021, Norway
| | - Pål Erik Goa
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim 7006, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mandar Jog
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway.
| |
Collapse
|
10
|
Li C, Buch S, Sun Z, Muccio M, Jiang L, Chen Y, Haacke EM, Zhang J, Wisniewski TM, Ge Y. In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T. Neuroimage 2024; 291:120597. [PMID: 38554779 PMCID: PMC11115460 DOI: 10.1016/j.neuroimage.2024.120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Sun
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Gu C, Li Y, Cao D, Miao X, Paez AG, Sun Y, Cai J, Li W, Li X, Pillai JJ, Earley CJ, van Zijl PC, Hua J. On the optimization of 3D inflow-based vascular-space-occupancy (iVASO) MRI for the quantification of arterial cerebral blood volume (CBVa). Magn Reson Med 2024; 91:1893-1907. [PMID: 38115573 PMCID: PMC10950541 DOI: 10.1002/mrm.29971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The inflow-based vascular-space-occupancy (iVASO) MRI was originally developed in a single-slice mode to measure arterial cerebral blood volume (CBVa). When vascular crushers are applied in iVASO, the signals can be sensitized predominantly to small pial arteries and arterioles. The purpose of this study is to perform a systematic optimization and evaluation of a 3D iVASO sequence on both 3 T and 7 T for the quantification of CBVa values in the human brain. METHODS Three sets of experiments were performed in three separate cohorts. (1) 3D iVASO MRI protocols were compared to single-slice iVASO, and the reproducibility of whole-brain 3D iVASO MRI was evaluated. (2) The effects from different vascular crushers in iVASO were assessed. (3) 3D iVASO MRI results were evaluated in arterial and venous blood vessels identified using ultrasmall-superparamagnetic-iron-oxides-enhanced MRI to validate its arterial origin. RESULTS 3D iVASO scans showed signal-to-noise ratio (SNR) and CBVa measures consistent with single-slice iVASO with reasonable intrasubject reproducibility. Among the iVASO scans performed with different vascular crushers, the whole-brain 3D iVASO scan with a motion-sensitized-driven-equilibrium preparation with two binomial refocusing pulses and an effective TE of 50 ms showed the best suppression of macrovascular signals, with a relatively low specific absorption rate. When no vascular crusher was applied, the CBVa maps from 3D iVASO scans showed large CBVa values in arterial vessels but well-suppressed signals in venous vessels. CONCLUSION A whole-brain 3D iVASO MRI scan was optimized for CBVa measurement in the human brain. When only microvascular signals are desired, a motion-sensitized-driven-equilibrium-based vascular crusher with binomial refocusing pulses can be applied in 3D iVASO.
Collapse
Affiliation(s)
- Chunming Gu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Yinghao Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Di Cao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Xinyuan Miao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adrian G. Paez
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Yuanqi Sun
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jitong Cai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Wenbo Li
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Xu Li
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jay J. Pillai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Christopher J. Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter C.M. van Zijl
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jun Hua
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
12
|
Lapusan R, Borlan R, Focsan M. Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials. NANOSCALE ADVANCES 2024; 6:2234-2259. [PMID: 38694462 PMCID: PMC11059564 DOI: 10.1039/d3na01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
The nexus of advanced technology and medical therapeutics has ushered in a transformative epoch in contemporary medicine. Within this arena, Magnetic Resonance Imaging (MRI) emerges as a paramount tool, intertwining the advancements of technology with the art of healing. MRI's pivotal role is evident in its broad applicability, spanning from neurological diseases, soft-tissue and tumour characterization, to many more applications. Though already foundational, aspirations remain to further enhance MRI's capabilities. A significant avenue under exploration is the incorporation of innovative nanotechnological contrast agents. Forefront among these are Superparamagnetic Iron Oxide Nanoparticles (SPIONs), recognized for their adaptability and safety profile. SPION's intrinsic malleability allows them to be tailored for improved biocompatibility, while their functionality is further broadened when equipped with specific targeting molecules. Yet, the path to optimization is not devoid of challenges, from renal clearance concerns to potential side effects stemming from iron overload. This review endeavors to map the intricate journey of SPIONs as MRI contrast agents, offering a chronological perspective of their evolution and deployment. We provide an in-depth current outline of the most representative and impactful pre-clinical and clinical studies centered on the integration of SPIONs in MRI, tracing their trajectory from foundational research to contemporary applications.
Collapse
Affiliation(s)
- Radu Lapusan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| |
Collapse
|
13
|
Huang P, Chen K, Liu C, Zhen Z, Zhang R. Visualizing Cerebral Small Vessel Degeneration During Aging and Diseases Using Magnetic Resonance Imaging. J Magn Reson Imaging 2023; 58:1323-1337. [PMID: 37052571 DOI: 10.1002/jmri.28736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Cerebral small vessel disease is a major contributor to brain disorders in older adults. It is associated with a much higher risk of stroke and dementia. Due to a lack of clinical and fluid biomarkers, diagnosing and grading small vessel disease are highly dependent on magnetic resonance imaging. In the past, researchers mostly used brain parenchymal imaging markers to represent small vessel damage, but the relationships between these surrogate markers and small vessel pathologies are complex. Recent progress in high-resolution magnetic resonance imaging methods, including time-of-flight MR angiography, phase-contrast MR angiography, black blood vessel wall imaging, susceptibility-weighted imaging, and contrast-enhanced methods, allow for direct visualization of cerebral small vessel structures. They could be powerful tools for understanding aging-related small vessel degeneration and improving disease diagnosis and treatment. This article will review progress in these imaging techniques and their application in aging and disease studies. Some challenges and future directions are also discussed. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: 3.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kang Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiming Zhen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Qu F, Sun T, Marin-Concha J, Jaiman S, Jiang L, Mody S, Hernandez-Andrade E, Subramanian K, Qian Z, Romero R, Haacke EM. Fetal-placental MR angiography at 1.5 T and 3 T. Magn Reson Imaging 2023; 102:133-140. [PMID: 37207824 PMCID: PMC10616819 DOI: 10.1016/j.mri.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVES The objective of this work was to investigate the application of 2D Time-of-Flight (TOF) magnetic resonance angiography (MRA) to observe the placental vasculature at both 1.5 T and 3 T. METHODS Fifteen appropriate for gestational age (AGA) (GA: 29.7 ± 3.4 weeks; GA range: 23 and 6/7 weeks to 36 and 2/7 weeks) and eleven patients with an abnormal singleton pregnancy (GA: 31.4 ± 4.4 weeks; GA range: 24 weeks to 35 and 2/7 weeks) were recruited in the study. Three AGA patients were scanned twice at different gestational ages. Patients were scanned either at 3 T or 1.5 T using both T2-HASTE and 2D TOF to image the entire placental vasculature. RESULTS The umbilical, chorionic vessels, stem vessels, arcuate arteries, radial arteries, and spiral arteries were shown in most of the subjects. Hyrtl's anastomosis was found in two subjects in the 1.5 T data. The uterine arteries were observed in more than half of the subjects. For those patients scanned twice, the same spiral arteries were identified in both scans. CONCLUSIONS 2D TOF is a technique that can be applied in studying the fetal-placental vasculature at both 1.5 T and 3 T.
Collapse
Affiliation(s)
- Feifei Qu
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Taotao Sun
- Department of Radiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - Julio Marin-Concha
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MI, USA
| | - Sunil Jaiman
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MI, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ling Jiang
- Department of Radiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Swati Mody
- Department of Radiology, Children Hospital of Michigan, Detroit, MI, USA
| | - Edgar Hernandez-Andrade
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MI, USA
| | | | - Zhaoxia Qian
- Department of Radiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA,; Detroit Medical Center, Detroit, MI, USA,; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Jung JY, Seo DK, Lee YB, Kang CK. MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI. SENSORS (BASEL, SWITZERLAND) 2022; 22:6191. [PMID: 36015953 PMCID: PMC9415701 DOI: 10.3390/s22166191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The diagnosis of small vessel disease is attracting interest; however, it remains difficult to visualize the microvasculature using 3 Tesla (T) magnetic resonance imaging (MRI). Therefore, this study aimed to visualize the microvascular structure and measure a slow flow on 3T MRI. We developed a microcirculation system using piezoelectric pumps connected to small tubes (0.4, 0.5, 0.8, and 1.0 mm) and evaluated various MR sequences and imaging parameters to identify the most appropriate acquisition parameters. We found that the system could image small structures with a diameter of 0.5 mm or more when using a 1 m-long tube (maximal signal intensity of 241 in 1 mm, 199 in 0.8 mm, and 133 in 0.5 mm). We also found that the highest signal-to-noise ratio (SNR) appeared on 2-dimensional time-of-flight low-resolution imaging and that the flow velocity (10.03 cm/s) was similar to the actual velocity (11.01 cm/s in a flowmeter) when velocity encoding of 30 cm/s was used in a 0.8 mm-diameter tube. In conclusion, this study demonstrates that a microcirculation system can be used to image small vessels. Therefore, our results could serve as a basis for research on vessels' anatomical structure and pathophysiological function in small vessel disease.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Gachon University, Incheon 21936, Korea
| | - Dong-Kyu Seo
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Korea
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea
| | - Chang-Ki Kang
- Department of Health Science, Gachon University Graduate School, Gachon University, Incheon 21936, Korea
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Korea
| |
Collapse
|
16
|
Role of intra-tumoral vasculature imaging features on susceptibility weighted imaging in differentiating primary central nervous system lymphoma from glioblastoma: a multiparametric comparison with pathological validation. Neuroradiology 2022; 64:1801-1818. [DOI: 10.1007/s00234-022-02946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
17
|
Buch S, Chen Y, Jella P, Ge Y, Haacke EM. Vascular mapping of the human hippocampus using Ferumoxytol-enhanced MRI. Neuroimage 2022; 250:118957. [PMID: 35122968 PMCID: PMC9484293 DOI: 10.1016/j.neuroimage.2022.118957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/09/2021] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is a small but complex grey matter structure that plays an important role in spatial and episodic memory and can be affected by a wide range of pathologies including vascular abnormalities. In this work, we introduce the use of Ferumoxytol, an ultra-small superparamagnetic iron oxide (USPIO) agent, to induce susceptibility in the arteries (as well as increase the susceptibility in the veins) to map the hippocampal micro-vasculature and to evaluate the quantitative change in tissue fractional vascular density (FVD), in each of its subfields. A total of 39 healthy subjects (aged 35.4 ± 14.2 years, from 18 to 81 years old) were scanned with a high-resolution (0.22×0.44×1 mm3) dual-echo SWI sequence acquired at four time points during a gradual increase in Ferumoxytol dose (final dose = 4 mg/kg). The volumes of each subfield were obtained automatically from the pre-contrast T1-weighted data. The dynamically acquired SWI data were co-registered and adaptively combined to reduce the blooming artifacts from large vessels, preserving the contrast from smaller vessels. The resultant SWI data were used to segment the hippocampal vasculature and to measure the FVD ((volume occupied by vessels)/(total volume)) for each subfield. The hippocampal fissure, along with the fimbria, granular cell layer of the dentate gyrus and cornu ammonis layers (except for CA1), showed higher micro-vascular FVD than the other parts of hippocampus. The CA1 region exhibited a significant correlation with age (R = -0.37, p < 0.05). demonstrating an overall loss of hippocampal vascularity in the normal aging process. Moreover, the vascular density reduction was more prominent than the age correlation with the volume reduction (R = -0.1, p > 0.05) of the CA1 subfield, which would suggest that vascular degeneration may precede tissue atrophy.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Pavan Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Fu Y, Zhao W, Lin K, Lv A, Tian L, Wang Z, Li S, Yan Y. USPIO-SWI Shows Fingolimod Enhanced Alteplase Action on Angiographic Reperfusion in eMCAO Rats. J Magn Reson Imaging 2022; 55:1095-1106. [PMID: 34480787 DOI: 10.1002/jmri.27914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Noninvasive evaluation of the status of cerebral arteriole perfusion remains a practical challenge in murine stroke models, because conventional magnetic resonance imaging (MRI) is no longer capable of capturing these very small vessels. PURPOSE To investigate the feasibility of ultrasmall superparamagnetic iron oxide particles (USPIO)-based susceptibility weighted imaging (SWI)-MRI (USPIO-SWI) and T2* map-MRI (USPIO-T2* map) for monitoring angiographic perfusion in stroke rats. STUDY TYPE A preclinical randomized controlled trial. ANIMAL MODEL Normal rats (N = 9), embolic middle cerebral artery occlusion (eMCAO) rats (N = 66). FIELD STRENGTH/SEQUENCE 7 T; T2* map (multigradient echo), SWI (3D gradient echo). ASSESSMENT Experiment 1: To develop a method for angiographic reperfusion evaluation with USPIO-SWI. Normal rats were used to optimize the USPIO dosage (5.6, 16.8, and 56 mg/kg ferumoxytol) as well as scan time points for cerebral arterioles. Contrast-to-noise ratio (CNR) was measured. Stroke rats were further used and the number of visual cortical vessels were counted. Experiment 2: To examine whether fingolimod (lymphocytes inhibitor) enhances the action of tissue plasminogen activator (tPA) in eMCAO rats on cerebral angiographic reperfusion. STATISTICAL TESTS Mann-Whitney test and two way-ANOVA were used. P < 0.05 was considered statistically significant. RESULTS CNR values of cerebral cortical penetrating arteries in normal rats were significantly increased to 4.4 ± 0.5 (5.6 mg/kg), 6.1 ± 0.5 (16.8 mg/kg), and 3.4 ± 0.9 (56 mg/kg) after USPIO injection. The number of visual cortical vessels on USPIO-SWI images in ischemic regions was significantly less than in control regions (5 ± 2 vs. 56 ± 20) of eMCAO rats. Compared with eMCAO rats who received tPA only, eMCAO rats who received the combination of fingolimod and tPA exhibited significantly higher proportion of complete angiographic reperfusion (69% vs. 17%). DATA CONCLUSION This study supports the feasibility of angiographic perfusion evaluation with USPIO-SWI in stroke rats. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Ying Fu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wenlong Zhao
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Kunxin Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Aowei Lv
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Lili Tian
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Function Neuroimaging, Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
19
|
Wang T, Jin A, Fu Y, Zhang Z, Li S, Wang D, Wang Y. Heterogeneity of White Matter Hyperintensities in Cognitively Impaired Patients With Cerebral Small Vessel Disease. Front Immunol 2021; 12:803504. [PMID: 34956241 PMCID: PMC8695488 DOI: 10.3389/fimmu.2021.803504] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Similar white matter hyperintensities (WMH) might have different impact on the cognitive outcomes in patients with cerebral small vessel disease (CSVD). This study is to assess the possible factors related to the heterogeneity of WMH in cognitively impaired patients with CVSD. Methods We analyzed data from a cohort of patients with CVSD who were recruited consecutively from the Beijing Tiantan Hospital from 2015 to 2020. WMH, lacunes, enlarged perivascular space (ePVS), microbleeds and lacunar infarcts were rated on brain MRI. A score of <26 on the Montreal Cognitive Assessment (MoCA) indicated cognitive impairment. A mismatch was defined as the severity of WMH not matching the severity of cognitive dysfunction. Type-1 mismatch was defined as a mild WMH (Fazekas score = 0-1) associated with cognitive impairment, and type-2 mismatch was defined as a severe WMH (Fazekas score = 5-6) associated with normal cognitive function. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced SWI on 3-Tesla MRI was used to image the penetrating arteries in basal ganglia to explore the underlying mechanism of this mismatch. Multivariable logistic regression was used to analyze the association between the imaging features and cognitive impairment. Results In 156 patients, 118 (75.6%) had cognitive impairment and 37 (23.7%) showed mismatch. Twenty five (16.0%) had type-1 mismatch and 12 (7.7%) had type-2 mismatch. Regression analysis found that WMH, lacunes, microbleeds and total CSVD scores were associated with cognitive impairment and were independent of vascular risk factors. However, lacunes, microbleeds and total CSVD scores were related to the mismatch between WMH and cognitive impairment (p=0.006, 0.005 and 0.0001, respectively). Specially, age and ePVS in basal ganglia were related to type-1 mismatch (p=0.04 and 0.02, respectively); microbleeds and total CSVD scores were related to type-2 mismatch (p=0.01 and 0.03, respectively). Although the severity of WMH was similar, the injury scores of penetrating arteries were significantly different between those with and without cognitive impairment (p=0.04). Conclusions Heterogeneity of WMH was present in cognitively impaired patients with CSVD. Conventional imaging features and injury of penetrating arteries may account for such heterogeneity, which can be a hallmark for early identification and prevention of cognitive impairment.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aoming Jin
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaowu Li
- Department of Neuroimaging, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - David Wang
- Neurovascular Division, Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
20
|
de Bortoli T, Boehm-Sturm P, Koch SP, Nieminen-Kelhä M, Wessels L, Mueller S, Ielacqua GD, Klohs J, Vajkoczy P, Hecht N. Three-Dimensional Iron Oxide Nanoparticle-Based Contrast-Enhanced Magnetic Resonance Imaging for Characterization of Cerebral Arteriogenesis in the Mouse Neocortex. Front Neurosci 2021; 15:756577. [PMID: 34899163 PMCID: PMC8662986 DOI: 10.3389/fnins.2021.756577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Subsurface blood vessels in the cerebral cortex have been identified as a bottleneck in cerebral perfusion with the potential for collateral remodeling. However, valid techniques for non-invasive, longitudinal characterization of neocortical microvessels are still lacking. In this study, we validated contrast-enhanced magnetic resonance imaging (CE-MRI) for in vivo characterization of vascular changes in a model of spontaneous collateral outgrowth following chronic cerebral hypoperfusion. Methods: C57BL/6J mice were randomly assigned to unilateral internal carotid artery occlusion or sham surgery and after 21 days, CE-MRI based on T2*-weighted imaging was performed using ultra-small superparamagnetic iron oxide nanoparticles to obtain subtraction angiographies and steady-state cerebral blood volume (ss-CBV) maps. First pass dynamic susceptibility contrast MRI (DSC-MRI) was performed for internal validation of ss-CBV. Further validation at the histological level was provided by ex vivo serial two-photon tomography (STP). Results: Qualitatively, an increase in vessel density was observed on CE-MRI subtraction angiographies following occlusion; however, a quantitative vessel tracing analysis was prone to errors in our model. Measurements of ss-CBV reliably identified an increase in cortical vasculature, validated by DSC-MRI and STP. Conclusion: Iron oxide nanoparticle-based ss-CBV serves as a robust, non-invasive imaging surrogate marker for neocortical vessels, with the potential to reduce and refine preclinical models targeting the development and outgrowth of cerebral collateralization.
Collapse
Affiliation(s)
- Till de Bortoli
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Philipp Boehm-Sturm
- Center for Stroke Research Berlin (CSB), Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan P Koch
- Center for Stroke Research Berlin (CSB), Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Lars Wessels
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Susanne Mueller
- Center for Stroke Research Berlin (CSB), Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Giovanna D Ielacqua
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| |
Collapse
|
21
|
Staszak K, Wieszczycka K, Bajek A, Staszak M, Tylkowski B, Roszkowski K. Achievement in active agent structures as a power tools in tumor angiogenesis imaging. Biochim Biophys Acta Rev Cancer 2021; 1876:188560. [PMID: 33965512 DOI: 10.1016/j.bbcan.2021.188560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
According to World Health Organization (WHO) cancer is the second most important cause of death globally. Because angiogenesis is considered as an essential process of growth, proliferation and tumor progression, within this review we decided to shade light on recent development of chemical compounds which play a significant role in its imaging and monitoring. Indeed, the review gives insight about the current achievements of active agents structures involved in imaging techniques such as: positron emission computed tomography (PET), magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT), as well as combination PET/MRI and PET/CT. The review aims to provide the journal audience with a comprehensive and in-deep understanding of chemistry policy in tumor angiogenesis imaging.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Collegium Medicum Nicolaus Copernicus University, Karlowicza St. 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum Nicolaus Copernicus University, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland.
| |
Collapse
|
22
|
Haacke EM, Ge Y, Sethi SK, Buch S, Zamboni P. An Overview of Venous Abnormalities Related to the Development of Lesions in Multiple Sclerosis. Front Neurol 2021; 12:561458. [PMID: 33981281 PMCID: PMC8107266 DOI: 10.3389/fneur.2021.561458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is currently understood to be autoimmune. However, there is a long history and growing evidence for disrupted vasculature and flow within the disease pathology. A broad review of the literature related to vascular effects in MS revealed a suggestive role for abnormal flow in the medullary vein system. Evidence for venous involvement in multiple sclerosis dates back to the early pathological work by Charcot and Bourneville, in the mid-nineteenth century. Pioneering work by Adams in the 1980s demonstrated vasculitis within the walls of veins and venules proximal to active MS lesions. And more recently, magnetic resonance imaging (MRI) has been used to show manifestations of the central vein as a precursor to the development of new MS lesions, and high-resolution MRI using Ferumoxytol has been used to reveal the microvasculature that has previously only been demonstrated in cadaver brains. Both approaches may shed new light into the structural changes occurring in MS lesions. The material covered in this review shows that multiple pathophysiological events may occur sequentially, in parallel, or in a vicious circle which include: endothelial damage, venous collagenosis and fibrin deposition, loss of vessel compliance, venous hypertension, perfusion reduction followed by ischemia, medullary vein dilation and local vascular remodeling. We come to the conclusion that a potential source of MS lesions is due to locally disrupted flow which in turn leads to remodeling of the medullary veins followed by endothelial damage with the subsequent escape of glial cells, cytokines, etc. These ultimately lead to the cascade of inflammatory and demyelinating events which ensue in the course of the disease.
Collapse
Affiliation(s)
- E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean K. Sethi
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Paolo Zamboni
- Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Wang Y, Yan G, Zhu H, Buch S, Wang Y, Haacke EM, Hua J, Zhong Z. VC-Net: Deep Volume-Composition Networks for Segmentation and Visualization of Highly Sparse and Noisy Image Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1301-1311. [PMID: 33048701 DOI: 10.1109/tvcg.2020.3030374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fundamental motivation of the proposed work is to present a new visualization-guided computing paradigm to combine direct 3D volume processing and volume rendered clues for effective 3D exploration. For example, extracting and visualizing microstructures in-vivo have been a long-standing challenging problem. However, due to the high sparseness and noisiness in cerebrovasculature data as well as highly complex geometry and topology variations of micro vessels, it is still extremely challenging to extract the complete 3D vessel structure and visualize it in 3D with high fidelity. In this paper, we present an end-to-end deep learning method, VC-Net, for robust extraction of 3D microvascular structure through embedding the image composition, generated by maximum intensity projection (MIP), into the 3D volumetric image learning process to enhance the overall performance. The core novelty is to automatically leverage the volume visualization technique (e.g., MIP - a volume rendering scheme for 3D volume images) to enhance the 3D data exploration at the deep learning level. The MIP embedding features can enhance the local vessel signal (through canceling out the noise) and adapt to the geometric variability and scalability of vessels, which is of great importance in microvascular tracking. A multi-stream convolutional neural network (CNN) framework is proposed to effectively learn the 3D volume and 2D MIP feature vectors, respectively, and then explore their inter-dependencies in a joint volume-composition embedding space by unprojecting the 2D feature vectors into the 3D volume embedding space. It is noted that the proposed framework can better capture the small/micro vessels and improve the vessel connectivity. To our knowledge, this is the first time that a deep learning framework is proposed to construct a joint convolutional embedding space, where the computed vessel probabilities from volume rendering based 2D projection and 3D volume can be explored and integrated synergistically. Experimental results are evaluated and compared with the traditional 3D vessel segmentation methods and the state-of-the-art in deep learning, by using extensive public and real patient (micro- )cerebrovascular image datasets. The application of this accurate segmentation and visualization of sparse and complicated 3D microvascular structure facilitated by our method demonstrates the potential in a powerful MR arteriogram and venogram diagnosis of vascular disease.
Collapse
|
24
|
Buch S, Subramanian K, Jella PK, Chen Y, Wu Z, Shah K, Bernitsas E, Ge Y, Haacke EM. Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO. Neuroimage Clin 2020; 29:102525. [PMID: 33338965 PMCID: PMC7750444 DOI: 10.1016/j.nicl.2020.102525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Multiple Sclerosis (MS) is a progressive, inflammatory, neuro-degenerative disease of the central nervous system (CNS) characterized by a wide range of histopathological features including vascular abnormalities. In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI). METHODS Six subjects with relapsing remitting MS (RRMS, age = 47.3 ± 11.8 years with 3 females and 3 males) and fourteen age-matched healthy controls were scanned at 3 T with SWI acquired before and after the infusion of Ferumoxytol. Composite data was generated by registering the FLAIR data to the high resolution SWI data in order to highlight the vascular information in MS lesions. Both the central vein sign (CVS) and, a new measure, the multiple vessel sign (MVS) were identified, along with any vascular abnormalities, in the lesions on pre- and post-contrast SWI-FLAIR fusion data. The small vessel density within the periventricular normal-appearing white matter (NAWM) and the periventricular lesions were compared for all subjects. RESULTS Averaged across two independent raters, a total of 530 lesions were identified across all patients. The total number of lesions with vascularity on pre- and post-contrast data were 287 and 488, respectively. The lesions with abnormal vascular behavior were broken up into following categories: small lesions appearing only at the vessel boundary; dilated vessels within the lesions; and developmental venous angiomas. These vessel abnormalities observed within lesions increased from 55 on pre-contrast data to 153 on post-contrast data. Finally, across all the patients, the periventricular lesional vessel density was significantly higher (p < 0.05) than that of the periventricular NAWM. CONCLUSIONS By inducing a super-paramagnetic susceptibility in the blood using Ferumoxytol, the vascular abnormalities in the RRMS patients were revealed and small vessel densities were obtained. This approach has the potential to monitor the venous vasculature present in MS lesions, catalogue their characteristics and compare the vascular structures spatially to the presence of lesions. These enhanced vascular features may provide new insight into the pathophysiology of MS.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Pavan K Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Zhen Wu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Kamran Shah
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; Department of Neurology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
25
|
Henningsson M, Malik S, Botnar R, Castellanos D, Hussain T, Leiner T. Black-Blood Contrast in Cardiovascular MRI. J Magn Reson Imaging 2020; 55:61-80. [PMID: 33078512 PMCID: PMC9292502 DOI: 10.1002/jmri.27399] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
MRI is a versatile technique that offers many different options for tissue contrast, including suppressing the blood signal, so‐called black‐blood contrast. This contrast mechanism is extremely useful to visualize the vessel wall with high conspicuity or for characterization of tissue adjacent to the blood pool. In this review we cover the physics of black‐blood contrast and different techniques to achieve blood suppression, from methods intrinsic to the imaging readout to magnetization preparation pulses that can be combined with arbitrary readouts, including flow‐dependent and flow‐independent techniques. We emphasize the technical challenges of black‐blood contrast that can depend on flow and motion conditions, additional contrast weighting mechanisms (T1, T2, etc.), magnetic properties of the tissue, and spatial coverage. Finally, we describe specific implementations of black‐blood contrast for different vascular beds.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel Castellanos
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Division of Pediatric Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|