1
|
Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat Rev Neurol 2024; 20:347-363. [PMID: 38755449 DOI: 10.1038/s41582-024-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender - indicative of hyperalgesia and/or allodynia - and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.
Collapse
Affiliation(s)
- Chelsea M Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anushka Irani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Division of Rheumatology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
2
|
van Gool R, Far A, Drenthen GS, Jansen JFA, Goijen CP, Backes WH, Linden DEJ, Merkies ISJ, Faber CG, Upadhyay J, Hoeijmakers JGJ. Peripheral Pain Captured Centrally: Altered Brain Morphology on MRI in Small Fiber Neuropathy Patients With and Without an SCN9A Gene Variant. THE JOURNAL OF PAIN 2024; 25:730-741. [PMID: 37921732 DOI: 10.1016/j.jpain.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Amir Far
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Gerhard S Drenthen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, The Netherlands
| | - Celine P Goijen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Ingemar S J Merkies
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Neurology, Curaçao Medical Center, Willemstad, Kingdom of the Netherlands, Curaçao
| | - Catharina G Faber
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Janneke G J Hoeijmakers
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| |
Collapse
|
3
|
Zhang C, Zhang K, Hu X, Cai X, Chen Y, Gao F, Wang G. Regional GABA levels modulate abnormal resting-state network functional connectivity and cognitive impairment in multiple sclerosis. Cereb Cortex 2024; 34:bhad535. [PMID: 38271282 DOI: 10.1093/cercor/bhad535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
More evidence shows that changes in functional connectivity with regard to brain networks and neurometabolite levels correlated to cognitive impairment in multiple sclerosis. However, the neurological basis underlying the relationship among neurometabolite levels, functional connectivity, and cognitive impairment remains unclear. For this purpose, we used a combination of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to study gamma-aminobutyric acid and glutamate concentrations in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus, and inter-network functional connectivity in 29 relapsing-remitting multiple sclerosis patients and 34 matched healthy controls. Neuropsychological tests were used to evaluate the cognitive function. We found that relapsing-remitting multiple sclerosis patients demonstrated significantly reduced gamma-aminobutyric acid and glutamate concentrations and aberrant functional connectivity involving cognitive-related networks compared to healthy controls, and both alterations were associated with specific cognition decline. Moreover, mediation analyses indicated that decremented hippocampus gamma-aminobutyric acid levels in relapsing-remitting multiple sclerosis patients mediated the association between inter-network functional connectivity in various components of default mode network and verbal memory deficits. In summary, our findings shed new lights on the essential function of GABAergic system abnormalities in regulating network dysconnectivity and functional connectivity in relapsing-remitting multiple sclerosis patients, suggesting potential novel approach to treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xianyun Cai
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
4
|
Akimoto H, Suzuki H, Kan S, Funaba M, Nishida N, Fujimoto K, Ikeda H, Yonezawa T, Ikushima K, Shimizu Y, Matsubara T, Harada K, Nakagawa S, Sakai T. Resting-state functional magnetic resonance imaging indices are related to electrophysiological dysfunction in degenerative cervical myelopathy. Sci Rep 2024; 14:2344. [PMID: 38282042 PMCID: PMC10822854 DOI: 10.1038/s41598-024-53051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/27/2024] [Indexed: 01/30/2024] Open
Abstract
The age-related degenerative pathologies of the cervical spinal column that comprise degenerative cervical myelopathy (DCM) cause myelopathy due spinal cord compression. Functional neurological assessment of DCM can potentially reveal the severity and pathological mechanism of DCM. However, functional assessment by conventional MRI remains difficult. This study used resting-state functional MRI (rs-fMRI) to investigate the relationship between functional connectivity (FC) strength and neurophysiological indices and examined the feasibility of functional assessment by FC for DCM. Preoperatively, 34 patients with DCM underwent rs-fMRI scans. Preoperative central motor conduction time (CMCT) reflecting motor functional disability and intraoperative somatosensory evoked potentials (SEP) reflecting sensory functional disability were recorded as electrophysiological indices of severity of the cervical spinal cord impairment. We performed seed-to-voxel FC analysis and correlation analyses between FC strength and the two electrophysiological indices. We found that FC strength between the primary motor cortex and the precuneus correlated significantly positively with CMCT, and that between the lateral part of the sensorimotor cortex and the lateral occipital cortex also showed a significantly positive correlation with SEP amplitudes. These results suggest that we can evaluate neurological and electrophysiological severity in patients with DCM by analyzing FC strengths between certain brain regions.
Collapse
Affiliation(s)
- Hironobu Akimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hidenori Suzuki
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shigeyuki Kan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Masahiro Funaba
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuhiro Fujimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Ikeda
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Teppei Yonezawa
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kojiro Ikushima
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoichiro Shimizu
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
5
|
Hotta J, Saari J, Harno H, Kalso E, Forss N, Hari R. Somatotopic disruption of the functional connectivity of the primary sensorimotor cortex in complex regional pain syndrome type 1. Hum Brain Mapp 2023; 44:6258-6274. [PMID: 37837646 PMCID: PMC10619416 DOI: 10.1002/hbm.26513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023] Open
Abstract
In complex regional pain syndrome (CRPS), the representation area of the affected limb in the primary sensorimotor cortex (SM1) reacts abnormally during sensory stimulation and motor actions. We recorded 3T functional magnetic resonance imaging resting-state data from 17 upper-limb CRPS type 1 patients and 19 healthy control subjects to identify alterations of patients' SM1 function during spontaneous pain and to find out how the spatial distribution of these alterations were related to peripheral symptoms. Seed-based correlations and independent component analyses indicated that patients' upper-limb SM1 representation areas display (i) reduced interhemispheric connectivity, associated with the combined effect of intensity and spatial extent of limb pain, (ii) increased connectivity with the right anterior insula that positively correlated with the duration of CRPS, (iii) increased connectivity with periaqueductal gray matter, and (iv) disengagement from the other parts of the SM1 network. These findings, now reported for the first time in CRPS, parallel the alterations found in patients suffering from other chronic pain conditions or from limb denervation; they also agree with findings in healthy persons who are exposed to experimental pain or have used their limbs asymmetrically. Our results suggest that CRPS is associated with a sustained and somatotopically specific alteration of SM1 function, that has correspondence to the spatial distribution of the peripheral manifestations and to the duration of the syndrome.
Collapse
Affiliation(s)
- Jaakko Hotta
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroImagingAalto UniversityEspooFinland
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
| | - Jukka Saari
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroImagingAalto UniversityEspooFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Hanna Harno
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Nina Forss
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
| | - Riitta Hari
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Department of Art and MediaAalto University School of Arts, Design and ArchitectureHelsinkiFinland
| |
Collapse
|
6
|
Frak V, Cohen H. Current perspectives on the brain connectome. Brain Cogn 2023; 172:106080. [PMID: 37738927 DOI: 10.1016/j.bandc.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Affiliation(s)
| | - Henri Cohen
- Département de psychologie, UQAM, Canada, and Paris Descartes, France.
| |
Collapse
|
7
|
Almdahl IS, Martinussen LJ, Ousdal OT, Kraus M, Sowa P, Agartz I, Korsnes MS. Task-based functional connectivity reveals aberrance with the salience network during emotional interference in late-life depression. Aging Ment Health 2023; 27:2043-2051. [PMID: 36914245 DOI: 10.1080/13607863.2023.2179972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/05/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Late-life depression (LLD) is a common and debilitating disorder. Previously, resting-state studies have revealed abnormal functional connectivity (FC) of brain networks in LLD. Since LLD is associated with emotional-cognitive control deficits, the aim of this study was to compare FC of large-scale brain networks in older adults with and without a history of LLD during a cognitive control task with emotional stimuli. METHODS Cross-sectional case-control study. Twenty participants diagnosed with LLD and 37 never-depressed adults 60-88 years of age underwent functional magnetic resonance imaging during an emotional Stroop task. Network-region-to-region FC was assessed with seed regions in the default mode, the frontoparietal, the dorsal attention, and the salience networks. RESULTS FC between salience and sensorimotor network regions and between salience and dorsal attention network regions were reduced in LLD patients compared to controls during the processing of incongruent emotional stimuli. The normally positive FC between these networks were negative in LLD patients and inversely correlated with vascular risk and white matter hyperintensities. CONCLUSIONS Emotional-cognitive control in LLD is associated with aberrant functional coupling between salience and other networks. This expands on the network-based LLD model and proposes the salience network as a target for future interventions.
Collapse
Affiliation(s)
- Ina S Almdahl
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Liva J Martinussen
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Olga Therese Ousdal
- The Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Piotr Sowa
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Maria S Korsnes
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Kan S, Fujita N, Shibata M, Miki K, Yukioka M, Senba E. Three weeks of exercise therapy altered brain functional connectivity in fibromyalgia inpatients. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100132. [PMID: 38099286 PMCID: PMC10719530 DOI: 10.1016/j.ynpai.2023.100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 12/17/2023]
Abstract
Background Fibromyalgia (FM) is a chronic pain syndrome characterized by widespread pain, tenderness, and fatigue. Patients with FM have no effective medication so far, and their activity of daily living and quality of life are remarkably impaired. Therefore, new therapeutic approaches are awaited. Recently, exercise therapy has been gathering much attention as a promising treatment for FM. However, the underlying mechanisms are not fully understood, particularly, in the central nervous system, including the brain. Therefore, we investigated functional connectivity changes and their relationship with clinical improvement in patients with FM after exercise therapy to investigate the underlying mechanisms in the brain using resting-state fMRI (rs-fMRI) and functional connectivity (FC) analysis. Methods Seventeen patients with FM participated in this study. They underwent a 3-week exercise therapy on in-patient basis and a 5-min rs-fMRI scan before and after the exercise therapy. We compared the FC strength of sensorimotor regions and the mesocortico-limbic system between two scans. We also performed a multiple regression analysis to examine the relationship between pre-post differences in FC strength and improvement of patients' clinical symptoms or motor abilities. Results Patients with FM showed significant improvement in clinical symptoms and motor abilities. They also showed a significant pre-post difference in FC of the anterior cingulate cortex and a significant correlation between pre-post FC changes and improvement of clinical symptoms and motor abilities. Although sensorimotor regions tended to be related to the improvement of general disease severity and depression, brain regions belonging to the mesocortico-limbic system tended to be related to the improvement of motor abilities. Conclusion Our 3-week exercise therapy could ameliorate clinical symptoms and motor abilities of patients with FM, and lead to FC changes in sensorimotor regions and brain regions belonging to the mesocortico-limbic system. Furthermore, these changes were related to improvement of clinical symptoms and motor abilities. Our findings suggest that, as predicted by previous animal studies, spontaneous brain activities modified by exercise therapy, including the mesocortico-limbic system, improve clinical symptoms in patients with FM.
Collapse
Affiliation(s)
- Shigeyuki Kan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima Hiroshima 734-8551, Japan
- Department of Anesthesiology and Intensive Care Medicine, 2-2 Yamadaoka, Suita, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Nobuko Fujita
- Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University, 3-15-1 Nakatomigaoka, Nara, Nara 631-8524, Japan
| | - Masahiko Shibata
- Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University, 3-15-1 Nakatomigaoka, Nara, Nara 631-8524, Japan
| | - Kenji Miki
- Hayaishi Hospital, 2-75 Fudegasakicho, Tennoji-ku, Osaka, Osaka 543-0027, Japan
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka 567-0801, Japan
| | - Masao Yukioka
- Department of Rheumatology, Yukioka Hospital, 2-2-3 Ukita, Kita-ku, Osaka 530-0021, Japan
| | - Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka 567-0801, Japan
| |
Collapse
|
9
|
Holub F, Petri R, Schiel J, Feige B, Rutter MK, Tamm S, Riemann D, Kyle SD, Spiegelhalder K. Associations between insomnia symptoms and functional connectivity in the UK Biobank cohort (n = 29,423). J Sleep Res 2023; 32:e13790. [PMID: 36528860 DOI: 10.1111/jsr.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/13/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
An increasing number of studies harness resting-state fMRI functional connectivity analysis to investigate the neurobiological mechanisms of insomnia. The results to date are inconsistent and the detection of minor and widely distributed alterations in functional connectivity requires large sample sizes. The present study investigated associations between insomnia symptoms and resting-state functional connectivity at the whole-brain level in the largest sample to date. This cross-sectional analysis used resting-state imaging data from the UK Biobank, a large scale, population-based biomedical database. The analysis included 29,423 participants (age: 63.1 ± 7.5 years, 54.3% female), comprising 9210 with frequent insomnia symptoms and 20,213 controls without. Linear models were adjusted for relevant clinical, imaging, and socio-demographic variables. The Akaike information criterion was used for model selection. Multiple comparisons were corrected using the false discovery rate with a significance level of q < 0.05. Frequent insomnia symptoms were associated with increased connectivity within the default mode network and frontoparietal network, increased negative connectivity between the default mode network and the frontoparietal network, and decreased connectivity between the salience network and a node of the default mode network. Furthermore, frequent insomnia symptoms were associated with altered functional connectivity between nodes comprising sensory areas and the cerebellum. These functional alterations of brain networks may underlie dysfunctional affective and cognitive processing in insomnia and contribute to subjectively and objectively impaired sleep. However, it must be noted that the item that was used to assess frequent insomnia symptoms in this study did not assess all the characteristics of clinically diagnosed insomnia.
Collapse
Affiliation(s)
- Florian Holub
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxana Petri
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Schiel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sandra Tamm
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Wang T, Huang X, Wang J. Asthma's effect on brain connectivity and cognitive decline. Front Neurol 2023; 13:1065942. [PMID: 36818725 PMCID: PMC9936195 DOI: 10.3389/fneur.2022.1065942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the changes in dynamic voxel mirror homotopy connection (dVMHC) between cerebral hemispheres in patients with asthma. Methods Our study was designed using a case-control method. A total of 31 subjects with BA and 31 healthy subjects with matching basic information were examined using rsfMRI. We also calculated and obtained the dVMHC value between the cerebral cortexes. Results Compared with the normal control group, the dVMHC of the lingual gyrus (Ling) and the calcarine sulcus (CAL), which represented the visual network (VN), increased significantly in the asthma group, while the dVMHC of the medial superior frontal gyrus (MSFG), the anterior/middle/posterior cingulate gyrus (A/M/PCG), and the supplementary motor area (SMA) of the sensorimotor network decreased significantly in the asthma group. Conclusion This study showed that the ability of emotion regulation and the efficiency of visual and cognitive information processing in patients with BA was lower than in those in the HC group. The dVMHC analysis can be used to sensitively evaluate oxygen saturation, visual function changes, and attention bias caused by emotional disorders in patients with asthma, as well as to predict airway hyperresponsiveness, inflammatory progression, and dyspnea.
Collapse
Affiliation(s)
- Tao Wang
- Medical College of Nanchang University, Nanchang, China,The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China,*Correspondence: Jun Wang ✉
| |
Collapse
|
11
|
Bocharov AV, Savostyanov AN, Tamozhnikov SS, Karpova AG, Milakhina NS, Zavarzin EA, Saprigyn AE, Knyazev GG. Electrophysiological signatures of resting state networks under new environmental conditions. Neurosci Lett 2023; 794:137012. [PMID: 36521645 DOI: 10.1016/j.neulet.2022.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
It is assumed that cognitive processes are provided by the regulatory interactions of different brain networks. The three most stable resting state networks, among which the default mode network (DMN), the central executive network (CEN) and the salience network (SN) are considered to be the key neurocognitive networks for understanding higher cognitive functions. Peculiarities of changes in the connectivity of resting state networks of an individual entering a new environment and after a year of adaptation in this environment remain poorly studied. The aim of this study was to investigate the peculiarities of the connectivity of resting state networks calculated in EEG data in students right after moving to an unfamiliar environment and one year after moving. 128-channel EEGs were recorded in the resting state in 45 students (all men) aged from 18 to 29 years, who moved to the North region of Russia (Yakutsk, Republic of Sakha (Yakutia)). Resting state networks were calculated by the seed-based method. The subjects had increased SN connectivity with the sensorimotor cortex and the posterior node of DMN (posterior cingulate cortex and precuneus) in the condition when they were exposed to a new unfamiliar environment, compared to the condition after a year in the same environment. In general, the obtained data are consistent with the notion of increased SN functioning when encountering new significant stimuli and tasks, i.e. new environmental conditions, and the representation of SN as closely related to the function of homeostasis regulation according to organism's internal goals and environmental requirements.
Collapse
Affiliation(s)
- Andrey V Bocharov
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Institute for the Humanities, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Alexander N Savostyanov
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Institute for the Humanities, Novosibirsk State University, Novosibirsk 630090, Russia; Laboratory of Psychological Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Sergey S Tamozhnikov
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia
| | | | - Natalya S Milakhina
- Laboratory of Psychological Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Evgeny A Zavarzin
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia
| | - Alexander E Saprigyn
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Laboratory of Psychological Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gennady G Knyazev
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia
| |
Collapse
|
12
|
Yani MS, Eckel SP, Kirages DJ, Rodriguez LV, Corcos DM, Kutch JJ. Impaired Ability to Relax Pelvic Floor Muscles in Men With Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Phys Ther 2022; 102:6585840. [PMID: 35576002 PMCID: PMC9618172 DOI: 10.1093/ptj/pzac059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Excessive pelvic floor muscle activity has been suggested as a source of pain in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Our objective was to determine whether men with CP/CPPS have changes in neural drive that impair their ability to relax pelvic floor muscles. METHODS We recruited 90 men (42 with CP/CPPS and 48 in the control group [without a history of pelvic pain]). All completed the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI). We quantified the ability to relax by comparing resting pelvic floor muscle activity under 2 conditions: a "rest-only" condition, in which participants were instructed to simply relax, and a "rest-between-contraction" condition, in which participants were instructed to rest for several seconds between voluntary pelvic floor muscle contractions. We used multivariate mixed-effects models to examine differences between the groups (men with CP/CPPS and men in the control group) as well as the effect of 6 symptoms captured by the NIH-CPSI: pain related to location (perineum, testicles, penis, suprapubic region) and activity (urination, ejaculation). RESULTS Men with CP/CPPS were significantly different from men in the control group; men with CP/CPPS had higher resting activity in the rest-between-contraction condition than in the rest-only condition, whereas men in the control group had similar resting activities in both conditions. This effect was strongest in men who reported ejaculation-related pain, which was 70% of the CP/CPPS group. CONCLUSION Men without a history of pelvic pain were able to relax their pelvic floor muscles back to baseline after performing voluntary pelvic floor muscle contractions. In contrast, men with CP/CPPS, particularly those with ejaculation-related pain, had an impaired ability to relax their pelvic floor muscles. IMPACT This study may support the investigation of more personalized physical therapist approaches for CP/CPPS that enhance the ability to relax pelvic floor muscles as a mechanism for pain reduction.
Collapse
Affiliation(s)
- Moheb S Yani
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Sandrah P Eckel
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel J Kirages
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Larissa V Rodriguez
- Department of Urology, University of Southern California, Los Angeles, California, USA
| | - Daniel M Corcos
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Briggs RG, Young IM, Dadario NB, Fonseka RD, Hormovas J, Allan P, Larsen ML, Lin YH, Tanglay O, Maxwell BD, Conner AK, Stafford JF, Glenn CA, Teo C, Sughrue ME. Parcellation-based tractographic modeling of the salience network through meta-analysis. Brain Behav 2022; 12:e2646. [PMID: 35733239 PMCID: PMC9304834 DOI: 10.1002/brb3.2646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The salience network (SN) is a transitory mediator between active and passive states of mind. Multiple cortical areas, including the opercular, insular, and cingulate cortices have been linked in this processing, though knowledge of network connectivity has been devoid of structural specificity. OBJECTIVE The current study sought to create an anatomically specific connectivity model of the neural substrates involved in the salience network. METHODS A literature search of PubMed and BrainMap Sleuth was conducted for resting-state and task-based fMRI studies relevant to the salience network according to PRISMA guidelines. Publicly available meta-analytic software was utilized to extract relevant fMRI data for the creation of an activation likelihood estimation (ALE) map and relevant parcellations from the human connectome project overlapping with the ALE data were identified for inclusion in our SN model. DSI-based fiber tractography was then performed on publicaly available data from healthy subjects to determine the structural connections between cortical parcellations comprising the network. RESULTS Nine cortical regions were found to comprise the salience network: areas AVI (anterior ventral insula), MI (middle insula), FOP4 (frontal operculum 4), FOP5 (frontal operculum 5), a24pr (anterior 24 prime), a32pr (anterior 32 prime), p32pr (posterior 32 prime), and SCEF (supplementary and cingulate eye field), and 46. The frontal aslant tract was found to connect the opercular-insular cluster to the middle cingulate clusters of the network, while mostly short U-fibers connected adjacent nodes of the network. CONCLUSION Here we provide an anatomically specific connectivity model of the neural substrates involved in the salience network. These results may serve as an empiric basis for clinical translation in this region and for future study which seeks to expand our understanding of how specific neural substrates are involved in salience processing and guide subsequent human behavior.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Parker Allan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Micah L Larsen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - B David Maxwell
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia.,Omniscient Neurotechnology, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
McLain NJ, Yani MS, Kutch JJ. Analytic consistency and neural correlates of peak alpha frequency in the study of pain. J Neurosci Methods 2022; 368:109460. [PMID: 34958820 PMCID: PMC9236562 DOI: 10.1016/j.jneumeth.2021.109460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several studies have found evidence of reduced resting-state peak alpha frequency (PAF) in populations with pain. However, the stability of PAF from different analytic pipelines used to study pain has not been determined and underlying neural correlates of PAF have not been validated in humans. NEW METHOD For the first time we compare analytic pipelines and the relationship of PAF to activity in the whole brain and thalamus, a hypothesized generator of PAF. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and subsequently 64 channel resting-state electroencephalographic (EEG) from 47 healthy men, controls from an ongoing study of chronic prostatitis (a pain condition affecting men). We identified important variations in EEG processing for PAF from a review of 17 papers investigating the relationship between pain and PAF. We tested three progressively complex pre-processing pipelines and varied four postprocessing variables (epoch length, alpha band, calculation method, and region-of-interest [ROI]) that were inconsistent across the literature. RESULTS We found a single principal component, well-represented by the average PAF across all electrodes (grand-average PAF), explained > 95% of the variance across participants. We also found the grand-average PAF was highly correlated among the pre-processing pipelines and primarily impacted by calculation method and ROI. Across methods, interindividual differences in PAF were correlated with rs-fMRI-estimated activity in the thalamus, insula, cingulate, and sensory cortices. CONCLUSIONS These results suggest PAF is a relatively stable marker with respect to common pre and post-processing methods used in pain research and reflects interindividual differences in thalamic and salience network function.
Collapse
Affiliation(s)
| | | | - Jason J. Kutch
- Correspondence to: University of Southern California, 1540 E. Alcazar Street, CHP 155, Los Angeles, CA 90033, USA. (J.J. Kutch)
| |
Collapse
|
15
|
Benedetti F, Palladini M, Paolini M, Melloni E, Vai B, De Lorenzo R, Furlan R, Rovere-Querini P, Falini A, Mazza MG. Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: A multimodal magnetic resonance imaging study. Brain Behav Immun Health 2021; 18:100387. [PMID: 34746876 PMCID: PMC8562046 DOI: 10.1016/j.bbih.2021.100387] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023] Open
Abstract
Psychiatric sequelae substantially contribute to the post-acute burden of disease associated with COVID-19, persisting months after clearance of the virus. Brain imaging shows white matter (WM) hypodensities/hyperintensities, and the involvement of grey matter (GM) in prefrontal, anterior cingulate (ACC) and insular cortex after COVID, but little is known about brain correlates of persistent psychopathology. With a multimodal approach, we studied whole brain voxel-based morphometry, diffusion-tensor imaging, and resting-state connectivity, to correlate MRI measures with depression and post-traumatic distress (PTSD) in 42 COVID-19 survivors without brain lesions, at 90.59 ± 54.66 days after COVID. Systemic immune-inflammation index (SII) measured in the emergency department, which reflects the immune response and systemic inflammation based on peripheral lymphocyte, neutrophil, and platelet counts, predicted worse self-rated depression and PTSD, widespread lower diffusivity along the main axis of WM tracts, and abnormal functional connectivity (FC) among resting state networks. Self-rated depression and PTSD inversely correlated with GM volumes in ACC and insula, axial diffusivity, and associated with FC. We observed overlapping associations between severity of inflammation during acute COVID-19, brain structure and function, and severity of depression and post-traumatic distress in survivors, thus warranting interest for further study of brain correlates of the post-acute COVID-19 syndrome. Beyond COVID-19, these findings support the hypothesis that regional GM, WM microstructure, and FC could mediate the relationship between a medical illness and its psychopathological sequelae, and are in agreement with current perspectives on the brain structural and functional underpinnings of depressive psychopathology.
Collapse
Affiliation(s)
- Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Marco Paolini
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
- PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Melloni
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Benedetta Vai
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milano, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milano, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Neuroradiology, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Mario Gennaro Mazza
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
- PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|