1
|
Chehade NG, Gharbawie OA. Motor actions are spatially organized in motor and dorsal premotor cortex. eLife 2023; 12:e83196. [PMID: 37855376 PMCID: PMC10622145 DOI: 10.7554/elife.83196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2023] [Indexed: 10/20/2023] Open
Abstract
Frontal motor areas are central to controlling voluntary movements. In non-human primates, the motor areas contain independent, somatotopic, representations of the forelimb (i.e., motor maps). But are the neural codes for actions spatially organized within those forelimb representations? Addressing this question would provide insight into the poorly understood structure-function relationships of the cortical motor system. Here, we tackle the problem using high-resolution optical imaging and motor mapping in motor (M1) and dorsal premotor (PMd) cortex. Two macaque monkeys performed an instructed reach-to-grasp task while cortical activity was recorded with intrinsic signal optical imaging (ISOI). The spatial extent of activity in M1 and PMd was then quantified in relation to the forelimb motor maps, which we obtained from the same hemisphere with intracortical microstimulation. ISOI showed that task-related activity was concentrated in patches that collectively overlapped <40% of the M1 and PMd forelimb representations. The spatial organization of the patches was consistent across task conditions despite small variations in forelimb use. Nevertheless, the largest condition differences in forelimb use were reflected in the magnitude of cortical activity. Distinct time course profiles from patches in arm zones and patches in hand zones suggest functional differences within the forelimb representations. The results collectively support an organizational framework wherein the forelimb representations contain subzones enriched with neurons tuned for specific actions. Thus, the often-overlooked spatial dimension of neural activity appears to be an important organizing feature of the neural code in frontal motor areas.
Collapse
Affiliation(s)
- Nicholas G Chehade
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Center for Neuroscience, University of PittsburghPittsburghUnited States
| | - Omar A Gharbawie
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Center for Neuroscience, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| |
Collapse
|
2
|
Anaya D, Batra G, Bracewell P, Catoen R, Chakraborty D, Chevillet M, Damodara P, Dominguez A, Emms L, Jiang Z, Kim E, Klumb K, Lau F, Le R, Li J, Mateo B, Matloff L, Mehta A, Mugler EM, Murthy A, Nakagome S, Orendorff R, Saung EF, Schwarz R, Sethi R, Sevile R, Srivastava A, Sundberg J, Yang Y, Yin A. Scalable, modular continuous wave functional near-infrared spectroscopy system (Spotlight). JOURNAL OF BIOMEDICAL OPTICS 2023; 28:065003. [PMID: 37325190 PMCID: PMC10261976 DOI: 10.1117/1.jbo.28.6.065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023]
Abstract
Significance We present a fiberless, portable, and modular continuous wave-functional near-infrared spectroscopy system, Spotlight, consisting of multiple palm-sized modules-each containing high-density light-emitting diode and silicon photomultiplier detector arrays embedded in a flexible membrane that facilitates optode coupling to scalp curvature. Aim Spotlight's goal is to be a more portable, accessible, and powerful functional near-infrared spectroscopy (fNIRS) device for neuroscience and brain-computer interface (BCI) applications. We hope that the Spotlight designs we share here can spur more advances in fNIRS technology and better enable future non-invasive neuroscience and BCI research. Approach We report sensor characteristics in system validation on phantoms and motor cortical hemodynamic responses in a human finger-tapping experiment, where subjects wore custom 3D-printed caps with two sensor modules. Results The task conditions can be decoded offline with a median accuracy of 69.6%, reaching 94.7% for the best subject, and at a comparable accuracy in real time for a subset of subjects. We quantified how well the custom caps fitted to each subject and observed that better fit leads to more observed task-dependent hemodynamic response and better decoding accuracy. Conclusions The advances presented here should serve to make fNIRS more accessible for BCI applications.
Collapse
Affiliation(s)
- Daniel Anaya
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Gautam Batra
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - Ryan Catoen
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - Mark Chevillet
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | | | - Laurence Emms
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Zifan Jiang
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ealgoo Kim
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Keith Klumb
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Frances Lau
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Rosemary Le
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Jamie Li
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Brett Mateo
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Laura Matloff
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Asha Mehta
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - Akansh Murthy
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Sho Nakagome
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ryan Orendorff
- Meta Platforms, Inc., Menlo Park, California, United States
| | - E-Fann Saung
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Roland Schwarz
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ruben Sethi
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Rudy Sevile
- Meta Platforms, Inc., Menlo Park, California, United States
| | | | - John Sundberg
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Ying Yang
- Meta Platforms, Inc., Menlo Park, California, United States
| | - Allen Yin
- Meta Platforms, Inc., Menlo Park, California, United States
| |
Collapse
|
3
|
Bodda S, Diwakar S. Exploring EEG spectral and temporal dynamics underlying a hand grasp movement. PLoS One 2022; 17:e0270366. [PMID: 35737671 PMCID: PMC9223346 DOI: 10.1371/journal.pone.0270366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
For brain-computer interfaces, resolving the differences between pre-movement and movement requires decoding neural ensemble activity in the motor cortex's functional regions and behavioural patterns. Here, we explored the underlying neural activity and mechanisms concerning a grasped motor task by recording electroencephalography (EEG) signals during the execution of hand movements in healthy subjects. The grasped movement included different tasks; reaching the target, grasping the target, lifting the object upwards, and moving the object in the left or right directions. 163 trials of EEG data were acquired from 30 healthy participants who performed the grasped movement tasks. Rhythmic EEG activity was analysed during the premovement (alert task) condition and compared against grasped movement tasks while the arm was moved towards the left or right directions. The short positive to negative deflection that initiated around -0.5ms as a wave before the onset of movement cue can be used as a potential biomarker to differentiate movement initiation and movement. A rebound increment of 14% of beta oscillations and 26% gamma oscillations in the central regions was observed and could be used to distinguish pre-movement and grasped movement tasks. Comparing movement initiation to grasp showed a decrease of 10% in beta oscillations and 13% in gamma oscillations, and there was a rebound increment 4% beta and 3% gamma from grasp to grasped movement. We also investigated the combination MRCPs and spectral estimates of α, β, and γ oscillations as features for machine learning classifiers that could categorize movement conditions. Support vector machines with 3rd order polynomial kernel yielded 70% accuracy. Pruning the ranked features to 5 leaf nodes reduced the error rate by 16%. For decoding grasped movement and in the context of BCI applications, this study identifies potential biomarkers, including the spatio-temporal characteristics of MRCPs, spectral information, and choice of classifiers for optimally distinguishing initiation and grasped movement.
Collapse
Affiliation(s)
- Sandeep Bodda
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Shyam Diwakar
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
- Department of Electronics and Communication Engineering, School of Engineering, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
4
|
Yousef Yengej DN, Ferando I, Kechechyan G, Nwaobi SE, Raman S, Charles A, Faas GC. Continuous long-term recording and triggering of brain neurovascular activity and behaviour in freely moving rodents. J Physiol 2021; 599:4545-4559. [PMID: 34438476 DOI: 10.1113/jp281514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
A minimally invasive, microchip-based approach enables continuous long-term recording of brain neurovascular activity, heart rate, and head movement in freely behaving rodents. This approach can also be used for transcranial optical triggering of cortical activity in mice expressing channelrhodopsin. The system uses optical intrinsic signal recording to measure cerebral blood volume, which under baseline conditions is correlated with spontaneous neuronal activity. The arterial pulse and breathing can be quantified as a component of the optical intrinsic signal. Multi-directional head movement is measured simultaneously with a movement sensor. A separate movement tracking element through a camera enables precise mapping of overall movement within an enclosure. Data is processed by a dedicated single board computer, and streamed from multiple enclosures to a central server, enabling simultaneous remote monitoring and triggering in many subjects. One application of this system described here is the characterization of changes in of cerebral blood volume, heart rate and behaviour that occur with the sleep-wake cycle over weeks. Another application is optical triggering and recording of cortical spreading depression (CSD), the slowly propagated wave of neurovascular activity that occurs in the setting of brain injury and migraine aura. The neurovascular features of CSD are remarkably different in the awake vs. anaesthetized state in the same mouse. With its capacity to continuously and synchronously record multiple types of physiological and behavioural data over extended time periods in combination with intermittent triggering of brain activity, this inexpensive method has the potential for widespread practical application in rodent research. KEY POINTS: Recording and triggering of brain activity in mice and rats has typically required breaching the skull, and experiments are often performed under anaesthesia A minimally invasive microchip system enables continuous recording and triggering of neurovascular activity, and analysis of heart rate and behaviour in freely behaving rodents over weeks This system can be used to characterize physiological and behavioural changes associated with the sleep-wake cycle over extended time periods This approach can also be used with mice expressing channelrhodopsin to trigger and record cortical spreading depression (CSD) in freely behaving subjects. The neurovascular responses to CSD are remarkably different under anaesthesia compared with the awake state. The method is inexpensive and straightforward to employ at a relatively large scale. It enables translational investigation of a wide range of physiological and pathological conditions in rodent models of neurological and systemic diseases.
Collapse
Affiliation(s)
- Dmitri N Yousef Yengej
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Isabella Ferando
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,Department of Neurology, Miller School of Medicine at the University of Miami, 1150 NW 14th street, Miami, FL, 33136, USA
| | - Gayane Kechechyan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC 0657, La Jolla, CA, 92093-0657, USA
| | - Sinifunanya E Nwaobi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Shrayes Raman
- School of Letters and Sciences, UCLA, 1309 Murphy Hall Box 951413, Los Angeles, CA, 90095-1413, USA
| | - Andrew Charles
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Guido C Faas
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| |
Collapse
|