1
|
Chen YH, Huang SK. The influence of pitcher handedness on pitch-calling behavior: Insights from fMRI study on baseball umpires. Psychophysiology 2024; 61:e14501. [PMID: 38217057 DOI: 10.1111/psyp.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 01/14/2024]
Abstract
This functional magnetic resonance imaging study delves into the impact of experience and pitcher handedness on the pitch-calling behavior of baseball umpires. Expert and intermediate umpires were asked to make ball/strike calls on videotaped pitches of left- and right-handed pitchers and rate their certainty for the call while undergoing scanning. Behavioral results replicated previous findings that expert umpires were more certain but not more accurate or quicker than intermediate umpires, suggesting that, as sports officials, umpires may learn to project confidence to maintain control of the game. At the neural level, expert umpires exhibited more extensive and pronounced activations within the action observation network, dorsal striatum, and cerebellum. These heightened neural responses were probably associated with their enhanced visual processing abilities for pitching action and ball trajectory, honed over years of officiating. Notably, both expert and intermediate umpires exhibited decreased accuracy when judging pitches from left-handed pitchers compared to right-handed ones. These challenges in accuracy corresponded with weaker neural activations in the aforementioned brain regions, implying difficulties in processing specific visual details of the rarely encountered left-handed pitchers. Moreover, slightly longer reaction times and reduced uncertainty were observed particularly for left-handed ball pitches, as revealed by lower activation in the right premotor cortex, highlighting issues with predictive processing. In summary, our findings shed light on the influence of pitcher handedness on the pitch-calling behavior of baseball umpires and extend the current understanding of the perceptual and decision-making behavior of sports officials.
Collapse
Affiliation(s)
- Yin-Hua Chen
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Shih-Kuei Huang
- Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
2
|
Muñoz-Gómez E, Inglés M, Aguilar-Rodríguez M, Sempere-Rubio N, Mollà-Casanova S, Serra-Añó P. Effects of mirror therapy on spasticity and sensory impairment after stroke: Systematic review and meta-analysis. PM R 2023; 15:1478-1492. [PMID: 36787183 DOI: 10.1002/pmrj.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE To review and synthesize existing evidence on the effectiveness of mirror therapy (MT) compared to active exercise-based interventions (ie, cross-training and conventional exercise) for reducing spasticity and sensory impairment in stroke survivors. TYPE: Systematic Review and Metanalysis. LITERATURE SURVEY Pubmed/MEDLINE, Cochrane, Embase, CINAHL, and Physiotherapy Evidence Database (PEDro), were searched. METHODOLOGY Randomized controlled trials (RCTs) that investigated MT effectiveness in improving spasticity and sensory impairment in stroke survivors compared to a control group. SYNTHESIS Fifteen RCTs (653 volunteers) were included. Spasticity improvements achieved with MT were similar to those obtained with cross-training (standard mean difference [SMD]: 0.12, 95% confidence interval [CI]: -0.43 to 0.68). In addition, when further combined with conventional exercise, spasticity improved similarly in both groups (SMD: 0.10, 95% CI: -0.16, 0.36). Lastly, when MT plus exercise was compared to exercise alone, spasticity decreased in both groups (SMD: 0.16, 95% CI: -0.16 to 0.48). Nevertheless, none of the Interventions seem effective on sensory impairment (SMD: 0.27, 95% CI: -0.28 to 0.81). CONCLUSIONS MT is equally effective as other exercise therapies, such as cross-training and conventional exercise, for improving spasticity in stroke survivors, whereas none of the explored interventions yielded beneficial effects on sensory impairment. Further well-designed RCTs are needed to confirm the results.
Collapse
Affiliation(s)
- Elena Muñoz-Gómez
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Inglés
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Núria Sempere-Rubio
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Sara Mollà-Casanova
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Pilar Serra-Añó
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Guidali G, Picardi M, Gramegna C, Bolognini N. Modulating motor resonance with paired associativestimulation: Neurophysiological and behavioral outcomes. Cortex 2023; 163:139-153. [PMID: 37104888 DOI: 10.1016/j.cortex.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 04/29/2023]
Abstract
In the human brain, paired associative stimulation (PAS), a non-invasive brain stimulation technique based on Hebbian learning principles, can be used to model motor resonance, the inner activation of an observer's motor system by action observation. Indeed, the newly developed mirror PAS (m-PAS) protocol, through the repeatedly pairing of transcranial magnetic stimulation (TMS) pulses over the primary motor cortex (M1) and visual stimuli depicting index-finger movements, allows the emergence of a new, atypical pattern of cortico-spinal excitability. In the present study, we performed two experiments to explore (a) the debated hemispheric lateralization of the action-observation network and (b) the behavioral after-effects of m-PAS, particularly concerning a core function of the MNS: automatic imitation. In Experiment 1, healthy participants underwent two sessions of m-PAS, delivered over the right and left M1. Before and after each m-PAS session, motor resonance was assessed by recording motor-evoked potentials induced by single-pulse TMS applied to the right M1 while observing contralateral (left) and ipsilateral (right) index-finger movements or static hands. In Experiment 2, participants performed an imitative compatibility task before and after the m-PAS targeting the right M1. Results showed that only m-PAS targeting the right hemisphere, non-dominant in right-handed people, induced the emergence of motor resonance for the conditioned movement, absent before the stimulation. This effect is not present when m-PAS target the M1 of the left hemisphere. Importantly, the protocol also affects behavior, modulating automatic imitation in a strictly somatotopic fashion (i.e., influencing the imitation of the conditioned finger movement). Overall, this evidence shows that the m-PAS can be used to drive new associations between the perception of actions and their corresponding motor programs, measurable both at a neurophysiological and behavioral level. At least for simple, not goal-directed, movements, the induction of motor resonance and automatic imitation effects are governed by mototopic and somatotopic rules.
Collapse
Affiliation(s)
- Giacomo Guidali
- Department of Psychology & NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Michela Picardi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy; PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Gramegna
- Department of Psychology & NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; Laboratory of Neuropsychology/Dept. Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
4
|
Cui D, Sypré L, Vissers M, Sharma S, Vogels R, Nelissen K. Categorization learning induced changes in action representations in the macaque STS. Neuroimage 2023; 265:119780. [PMID: 36464097 PMCID: PMC9878441 DOI: 10.1016/j.neuroimage.2022.119780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroimaging and single cell recordings have demonstrated the presence of STS body category-selective regions (body patches) containing neurons responding to presentation of static bodies and body parts. To date, it remains unclear if these body patches and additional STS regions respond during observation of different categories of dynamic actions and to what extent categorization learning influences representations of observed actions in the STS. In the present study, we trained monkeys to discriminate videos depicting three different actions categories (grasping, touching and reaching) with a forced-choice action categorization task. Before and after categorization training, we performed fMRI recordings while monkeys passively observed the same action videos. At the behavioral level, after categorization training, monkeys generalized to untrained action exemplars, in particular for grasping actions. Before training, uni- and/or multivariate fMRI analyses suggest a broad representation of dynamic action categories in particular in posterior and middle STS. Univariate analysis further suggested action category specific training effects in middle and anterior body patches, face patch ML and posterior STS region MT and FST. Overall, our fMRI experiments suggest a widespread representation of observed dynamic bodily actions in the STS that can be modulated by visual learning, supporting its proposed role in action recognition.
Collapse
Affiliation(s)
- Ding Cui
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, O&N2 Campus Gasthuisberg, Herestraat 49, bus 1021, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Lotte Sypré
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, O&N2 Campus Gasthuisberg, Herestraat 49, bus 1021, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Mathias Vissers
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, O&N2 Campus Gasthuisberg, Herestraat 49, bus 1021, 3000 Leuven, Belgium
| | - Saloni Sharma
- Department of Neurobiology, Harvard Medical School, MA 02115, United States of America
| | - Rufin Vogels
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, O&N2 Campus Gasthuisberg, Herestraat 49, bus 1021, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Koen Nelissen
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, O&N2 Campus Gasthuisberg, Herestraat 49, bus 1021, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Two-monkey fMRI setup for investigating multifaceted aspects of social cognition and behavior involving a real-live conspecific. Neuroimage 2022; 255:119187. [PMID: 35398283 DOI: 10.1016/j.neuroimage.2022.119187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
While brain research over the past decades has shed light on the neural correlates of social cognition and behavior in human and non-human primates, most of this research has been performed in virtual settings requiring subjects to observe pictures or recorded videos instead of observing or interacting with another real-live individual. Here we present a two-monkey fMRI setup, allowing examining whole brain responses in macaque monkeys while they observe or interact face-to-face with another real-live conspecific. We tested this setup by comparing overall brain responses during observation of conspecific hand actions in a virtual (observation of recorded videos of actions) or live context (observation of a real-live conspecific performing actions). This dyadic monkey fMRI setup allows examining brain-wide responses in macaque monkeys during different aspects of social behavior, including observation of real-live actions and sensations, social facilitation, joint-attention and social interactions.
Collapse
|
6
|
Kislinger L. Photographs of Actions: What Makes Them Special Cues to Social Perception. Brain Sci 2021; 11:brainsci11111382. [PMID: 34827381 PMCID: PMC8615998 DOI: 10.3390/brainsci11111382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
I have reviewed studies on neural responses to pictured actions in the action observation network (AON) and the cognitive functions of these responses. Based on this review, I have analyzed the specific representational characteristics of action photographs. There has been consensus that AON responses provide viewers with knowledge of observed or pictured actions, but there has been controversy about the properties of this knowledge. Is this knowledge causally provided by AON activities or is it dependent on conceptual processing? What elements of actions does it refer to, and how generalized or specific is it? The answers to these questions have come from studies that used transcranial magnetic stimulation (TMS) to stimulate motor or somatosensory cortices. In conjunction with electromyography (EMG), TMS allows researchers to examine changes of the excitability in the corticospinal tract and muscles of people viewing pictured actions. The timing of these changes and muscle specificity enable inferences to be drawn about the cognitive products of processing pictured actions in the AON. Based on a review of studies using TMS and other neuroscience methods, I have proposed a novel hypothetical account that describes the characteristics of action photographs that make them effective cues to social perception. This account includes predictions that can be tested experimentally.
Collapse
|
7
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
8
|
Local and system mechanisms for action execution and observation in parietal and premotor cortices. Curr Biol 2021; 31:2819-2830.e4. [PMID: 33984266 PMCID: PMC8279740 DOI: 10.1016/j.cub.2021.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
The action observation network (AON) includes a system of brain areas largely shared with action execution in both human and nonhuman primates. Yet temporal and tuning specificities of distinct areas and of physiologically identified neuronal classes in the encoding of self and others’ action remain unknown. We recorded the activity of 355 single units from three crucial nodes of the AON, the anterior intraparietal area (AIP), and premotor areas F5 and F6, while monkeys performed a Go/No-Go grasping task and observed an experimenter performing it. At the system level, during task execution, F6 displays a prevalence of suppressed neurons and signals whether an action has to be performed, whereas AIP and F5 share a prevalence of facilitated neurons and remarkable target selectivity; during task observation, F5 stands out for its unique prevalence of facilitated neurons and its stronger and earlier modulation than AIP and F6. By applying unsupervised clustering of spike waveforms, we found distinct cell classes unevenly distributed across areas, with different firing properties and carrying specific visuomotor signals. Broadly spiking neurons exhibited a balanced amount of facilitated and suppressed activity during action execution and observation, whereas narrower spiking neurons showed more mutually facilitated responses during the execution of one’s own and others’ action, particularly in areas AIP and F5. Our findings elucidate the time course of activity and firing properties of neurons in the AON during one’s own and others’ action, from the system level of anatomically distinct areas to the local level of physiologically distinct cell classes. F6 neurons show a prevalence of suppressed activity, encoding whether to act Area F5 and AIP share a prevalence of facilitated neurons and target selectivity Across-areas, waveform-based clustering distinguished three neuronal classes Narrow-spiking neurons exhibit mutual modulation during self and others’ action
Collapse
|