1
|
Lo J, Wang J, Tran D, Nemeh G, Liu B, Shin SH, Athertya JS, Schiehser D, Ma Y, Du J. Age-related changes in myelin and myelin water quantified with short-TR adiabatic inversion-recovery (STAIR) sequences. Neuroimage Clin 2025; 46:103801. [PMID: 40367604 DOI: 10.1016/j.nicl.2025.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/14/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
Myelin proton density fraction (MPDF) and myelin water fraction (MWF) measured with short-TR adiabatic inversion-recovery (STAIR) sequences are potential biomarkers of aging and neurodegeneration, but the effects of aging on MPDF/MWF remain unknown. This study aims to assess relationships between age and MPDF/MWF using the 3D STAIR ultrashort echo time (STAIR-UTE) and STAIR short echo time (STAIR-STE) sequences, respectively. 42 volunteers (29 young (<55y), 13 old (>55y)), were recruited for MPDF and MWF mapping for white matter (WM) and gray matter (GM) on a 3 T scanner. Excellent inter-reader reliability was demonstrated for MPDF and MWF measurements with ICC values of 0.97 and 0.98, respectively, between two readers. In the young group, WM MPDF and MWF range from 8-13 % and 6-13 %, respectively, while GM MPDF and MWF range from 5-7 % and 3-5 %, respectively. In the old group, WM MPDF and MWF range from 6-12 % and 5-13 %, and GM MPDF and MWF range from 3-6 % and 2-5 %, respectively. The young group's MPDF/MWF values were significantly higher than those of the old group. Altogether, the 42 volunteers display linear and quadratic associations of MPDF/MWF with age. MPDF demonstrated significant correlations with MWF in the majority of brain regions. This study demonstrates the capability of two myelin imaging biomarkers, STAIR-UTE measured MPDF and STAIR-STE measured MWF to map brain myelin and MW. These biomarkers hold the potential to differentiate normal aging from neuroinflammatory/neurodegenerative diseases.
Collapse
Affiliation(s)
- James Lo
- Department of Radiology, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Jiaji Wang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Dylan Tran
- Department of Radiology, University of California, San Diego, CA, USA
| | - Gabrielle Nemeh
- Department of Radiology, University of California, San Diego, CA, USA
| | - Brandon Liu
- School of Medicine, University of California, San Diego, CA, USA
| | - Soo Hyun Shin
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, CA, USA
| | - Dawn Schiehser
- Research Service, Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
2
|
Xu Z, Zhou Z, Tao W, Lai W, Qian L, Cui W, Peng B, Zhang Y, Hou G. Altered topology in cortical morphometric similarity network in recurrent major depressive disorder. J Psychiatr Res 2025; 181:206-213. [PMID: 39616867 DOI: 10.1016/j.jpsychires.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Recurrent major depressive disorder (RDD) is increasingly understood to be associated with a 'disconnection' within the brain areas. But, the true understanding of cortical connectivities remains challenging. Morphometric similarity network (MSN) with multi-modal magnetic resonance imaging (MRI) could provide more information about cortical micro-architecture changes in individuals with RDD. METHODS Here, we integrated multi-modal features from T1-weighted imaging, diffusion tensor imaging (DTI), and inhomogeneous magnetization transfer imaging (ihMT) to construct MSN. We used graph theory to calculate topological changes in MSN and explore their relationship with the severity and recurrence. The topological properties of 42 RDD patients were compared with 56 age, sex, and education-matched healthy controls. RESULTS RDD subjects showed significantly decreased global efficiency, increased characteristic path length, reduced nodal efficiencies in the parietal lobe, subcortical area, and temporal lobe, increased betweenness centrality in the left supplementary motor area (SMA), decreased intra-modular connections in the parietal module and decreased inter-modular connections between the parietal and prefrontal modules. Notably, the global efficiency, characteristic path length, local efficiency of the right superior parietal gyrus, and inter-modular connections between the parietal and prefrontal modules were significantly associated with the number of depressive episodes. The betweenness centrality in SMA and the intra-modular connections in the parietal module showed a positive relationship with 17-item Hamilton Rating Scale for Depression (HAMD) scores. CONCLUSIONS The altered topology of MSN may serve as potential underlying pathological mechanisms of RDD. The impaired information integration of the network, particularly the disconnection within the fronto-parietal network, may be associated with the recurrence of depression. The SMA and the fronto-parietal network may be related to the severity of depression.
Collapse
Affiliation(s)
- Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, 518020, China
| | - Zhifeng Zhou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, 518020, China
| | - Weiqun Tao
- Department of Psychiatry, Acute Intervention Female Ward 1, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518000, China
| | - Wentao Lai
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, 518020, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Wei Cui
- MR Research, GE Healthcare, Beijing, 100176, China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518000, China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518000, China.
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, 518020, China.
| |
Collapse
|
3
|
Karan P, Edde M, Gilbert G, Barakovic M, Magon S, Descoteaux M. Characterization of the orientation dependence of magnetization transfer measures in single and crossing-fiber white matter. Magn Reson Med 2024; 92:2207-2221. [PMID: 38924176 DOI: 10.1002/mrm.30195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To fully characterize the orientation dependence of magnetization transfer (MT) and inhomogeneous MT (ihMT) measures in the whole white matter (WM), for both single-fiber and crossing-fiber voxels. METHODS A characterization method was developed using the fiber orientation obtained from diffusion MRI (dMRI) with diffusion tensor imaging (DTI) and constrained spherical deconvolution. This allowed for characterization of the orientation dependence of measures in all of WM, regardless of the number of fiber orientation in a voxel. Furthermore, the orientation dependence inside 31 different WM bundles was characterized to evaluate the homogeneity of the effect. Variation of the results within and between-subject was assessed from a 12-subject dataset. RESULTS Previous results for single-fiber voxels were reproduced and a novel characterization was produced in voxels of crossing fibers, which seems to follow trends consistent with single-fiber results. Heterogeneity of the orientation dependence across bundles was observed, but homogeneity within similar bundles was also highlighted. Differences in behavior between MT and ihMT measures, as well as the ratio and saturation versions of these, were noted. CONCLUSION Orientation dependence characterization was proven possible over the entirety of WM. The vast range of effects and subtleties of the orientation dependence on MT measures showed the need for, but also the challenges of, a correction method.
Collapse
Affiliation(s)
- Philippe Karan
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Manon Edde
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | | | - Muhamed Barakovic
- Pharma Research and Early Development, Neuroscience and Rare Diseases Roche Innovation Center Basel, Basel, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Neuroscience and Rare Diseases Roche Innovation Center Basel, Basel, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
4
|
Radunsky D, Solomon C, Stern N, Blumenfeld-Katzir T, Filo S, Mezer A, Karsa A, Shmueli K, Soustelle L, Duhamel G, Girard OM, Kepler G, Shrot S, Hoffmann C, Ben-Eliezer N. A comprehensive protocol for quantitative magnetic resonance imaging of the brain at 3 Tesla. PLoS One 2024; 19:e0297244. [PMID: 38820354 PMCID: PMC11142522 DOI: 10.1371/journal.pone.0297244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/01/2024] [Indexed: 06/02/2024] Open
Abstract
Quantitative MRI (qMRI) has been shown to be clinically useful for numerous applications in the brain and body. The development of rapid, accurate, and reproducible qMRI techniques offers access to new multiparametric data, which can provide a comprehensive view of tissue pathology. This work introduces a multiparametric qMRI protocol along with full postprocessing pipelines, optimized for brain imaging at 3 Tesla and using state-of-the-art qMRI tools. The total scan time is under 50 minutes and includes eight pulse-sequences, which produce range of quantitative maps including T1, T2, and T2* relaxation times, magnetic susceptibility, water and macromolecular tissue fractions, mean diffusivity and fractional anisotropy, magnetization transfer ratio (MTR), and inhomogeneous MTR. Practical tips and limitations of using the protocol are also provided and discussed. Application of the protocol is presented on a cohort of 28 healthy volunteers and 12 brain regions-of-interest (ROIs). Quantitative values agreed with previously reported values. Statistical analysis revealed low variability of qMRI parameters across subjects, which, compared to intra-ROI variability, was x4.1 ± 0.9 times higher on average. Significant and positive linear relationship was found between right and left hemispheres' values for all parameters and ROIs with Pearson correlation coefficients of r>0.89 (P<0.001), and mean slope of 0.95 ± 0.04. Finally, scan-rescan stability demonstrated high reproducibility of the measured parameters across ROIs and volunteers, with close-to-zero mean difference and without correlation between the mean and difference values (across map types, mean P value was 0.48 ± 0.27). The entire quantitative data and postprocessing scripts described in the manuscript are publicly available under dedicated GitHub and Figshare repositories. The quantitative maps produced by the presented protocol can promote longitudinal and multi-center studies, and improve the biological interpretability of qMRI by integrating multiple metrics that can reveal information, which is not apparent when examined using only a single contrast mechanism.
Collapse
Affiliation(s)
- Dvir Radunsky
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Chen Solomon
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Neta Stern
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | | - Shir Filo
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anita Karsa
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | | | | - Gal Kepler
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shrot
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Chen Hoffmann
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States of America
| |
Collapse
|
5
|
Mueller SG. 7T MP2RAGE for cortical myelin segmentation: Impact of aging. PLoS One 2024; 19:e0299670. [PMID: 38626149 PMCID: PMC11020839 DOI: 10.1371/journal.pone.0299670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/14/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Myelin and iron are major contributors to the cortical MR signal. The aim of this study was to investigate 1. Can MP2RAGE-derived contrasts at 7T in combination with k-means clustering be used to distinguish between heavily and sparsely myelinated layers in cortical gray matter (GM)? 2. Does this approach provide meaningful biological information? METHODS The following contrasts were generated from the 7T MP2RAGE images from 45 healthy controls (age: 19-75, f/m = 23/22) from the ATAG data repository: 1. T1 weighted image (UNI). 2. T1 relaxation image (T1map). 3. INVC/T1map ratio (RATIO). K-means clustering identified 6 clusters/tissue maps (csf, csf/gm-transition, wm, wm/gm transition, heavily myelinated cortical GM (dGM), sparsely myelinated cortical GM (sGM)). These tissue maps were then processed with SPM/DARTEL (volume-based analyses) and Freesurfer (surface-based analyses) and dGM and sGM volume/thickness of young adults (n = 27, 19-27 years) compared to those of older adults (n = 18, 42-75 years) at p<0.001 uncorrected. RESULTS The resulting maps showed good agreement with histological maps in the literature. Volume- and surface analyses found age-related dGM loss/thinning in the mid-posterior cingulate and parahippocampal/entorhinal gyrus and age-related sGM losses in lateral, mesial and orbitofrontal frontal, insular cortex and superior temporal gyrus. CONCLUSION The MP2RAGE derived UNI, T1map and RATIO contrasts can be used to identify dGM and sGM. Considering the close relationship between cortical myelo- and cytoarchitecture, the findings reported here indicate that this new technique might provide new insights into the nature of cortical GM loss in physiological and pathological conditions.
Collapse
Affiliation(s)
- Susanne G. Mueller
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
6
|
Khormi I, Al-Iedani O, Alshehri A, Ramadan S, Lechner-Scott J. MR myelin imaging in multiple sclerosis: A scoping review. J Neurol Sci 2023; 455:122807. [PMID: 38035651 DOI: 10.1016/j.jns.2023.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
The inability of disease-modifying therapies to stop the progression of multiple sclerosis (MS), has led to the development of a new therapeutic strategy focussing on myelin repair. While conventional MRI lacks sensitivity for quantifying myelin damage, advanced MRI techniques are proving effective. The development of targeted therapeutics requires histological validation of myelin imaging results, alongside the crucial task of establishing correlations between myelin imaging results and clinical assessments, so that the effectiveness of therapeutic interventions can be evaluated. The aims of this scoping review were to identify myelin imaging methods - some of which have been histologically validated, and to determine how these approaches correlate with clinical assessments of people with MS (pwMS), thus allowing for effective therapeutic evaluation. A search of two databases was undertaken for publications relating to studies on adults MS using either MRI/MR-histology of the MS brain in the range 1990-to-2022. The myelin imaging methods specified were relaxometry, magnetization transfer, and quantitative susceptibility. Relaxometry was used most frequently, with myelin water fraction (MWF) being the primary metric. Studies conducted on tissue from various regions of the brain showed that MWF was significantly lower in pwMS than in healthy controls. Magnetization transfer ratio indicated that the macromolecular content of lesions was lower than that of normal-appearing tissue. Higher magnetic susceptibility of lesions were indicative of myelin breakdown and iron accumulation. Several myelin imaging metrics were correlated with disability, disease severity and duration. Many studies showed a good correlation between myelin measured histologically and by MR myelin imaging techniques.
Collapse
Affiliation(s)
- Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia; College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Oun Al-Iedani
- Hunter Medical Research Institute, New Lambton Heights, Australia; School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia
| | - Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia; Department of Radiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia.
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia; School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia
| |
Collapse
|
7
|
Moallemian S, Salmon E, Bahri MA, Beliy N, Delhaye E, Balteau E, Degueldre C, Phillips C, Bastin C. Multimodal imaging of microstructural cerebral alterations and loss of synaptic density in Alzheimer's disease. Neurobiol Aging 2023; 132:24-35. [PMID: 37717552 DOI: 10.1016/j.neurobiolaging.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 09/19/2023]
Abstract
Multiple neuropathological events are involved in Alzheimer's disease (AD). The current study investigated the concurrence of neurodegeneration, increased iron content, atrophy, and demyelination in AD. Quantitative multiparameter magnetic resonance imaging (MRI) maps providing neuroimaging biomarkers for myelination and iron content along with synaptic density measurements using [18F] UCB-H PET were acquired in 24 AD and 19 Healthy controls (19 males). The whole brain voxel-wise group comparison revealed demyelination in the right hippocampus, while no significant iron content difference was detected. Bilateral atrophy and synaptic density loss were observed in the hippocampus and amygdala. The multivariate GLM (mGLM) analysis shows a bilateral difference in the hippocampus and amygdala, right pallidum, left fusiform and temporal lobe suggesting that these regions are the most affected despite the diverse differences in brain tissue properties in AD. Demyelination was identified as the most affecting factor in the observed differences. Here, the mGLM is introduced as an alternative for multiple comparisons between different modalities, reducing the risk of false positives while informing about the co-occurrence of neuropathological processes in AD.
Collapse
Affiliation(s)
- Soodeh Moallemian
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Nikita Beliy
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Emma Delhaye
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christian Degueldre
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| |
Collapse
|
8
|
Kruggel F, Solodkin A. Analyzing the cortical fine structure as revealed by ex-vivo anatomical MRI. J Comp Neurol 2023; 531:2146-2161. [PMID: 37522626 DOI: 10.1002/cne.25532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/15/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
The human cortex has a rich fiber structure as revealed by myelin-staining of histological slices. Myelin also contributes to the image contrast in Magnetic Resonance Imaging (MRI). Recent advances in Magnetic Resonance (MR) scanner and imaging technology allowed the acquisition of an ex-vivo data set at an isotropic resolution of 100 µm. This study focused on a computational analysis of this data set with the aim of bridging between histological knowledge and MRI-based results. This work highlights: (1) the design and implementation of a processing chain that extracts intracortical features from a high-resolution MR image; (2) a demonstration of the correspondence between MRI-based cortical intensity profiles and the myelo-architectonic layering of the cortex; (3) the characterization and classification of four basic myelo-architectonic profile types; (4) the distinction of cortical regions based on myelo-architectonic features; and (5) the segmentation of cortical modules in the entorhinal cortex.
Collapse
Affiliation(s)
- Frithjof Kruggel
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Ana Solodkin
- School of Behavioral and Brain Sciences, University of Texas, Richardson, Texas, USA
| |
Collapse
|
9
|
Rowley CD, Campbell JSW, Leppert IR, Nelson MC, Pike GB, Tardif CL. Optimization of acquisition parameters for cortical inhomogeneous magnetization transfer (ihMT) imaging using a rapid gradient echo readout. Magn Reson Med 2023; 90:1762-1775. [PMID: 37332194 DOI: 10.1002/mrm.29754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE Imaging biomarkers with increased myelin specificity are needed to better understand the complex progression of neurological disorders. Inhomogeneous magnetization transfer (ihMT) imaging is an emergent technique that has a high degree of specificity for myelin content but suffers from low signal to-noise ratio (SNR). This study used simulations to determine optimal sequence parameters for ihMT imaging for use in high-resolution cortical mapping. METHODS MT-weighted cortical image intensity and ihMT SNR were simulated using modified Bloch equations for a range of sequence parameters. The acquisition time was limited to 4.5 min/volume. A custom MT-weighted RAGE sequence with center-out k-space encoding was used to enhance SNR at 3 T. Pulsed MT imaging was studied over a range of saturation parameters, and the impact of the turbo factor on the effective ihMT resolution was investigated. 1 mm isotropic ihMTsat maps were generated in 25 healthy adults. RESULTS Greater SNR was observed for larger number of bursts consisting of 6-8 saturation pulses each, combined with a high readout turbo factor. However, that protocol suffered from a point spread function that was more than twice the nominal resolution. For high-resolution cortical imaging, we selected a protocol with a higher effective resolution at the cost of a lower SNR. We present the first group-average ihMTsat whole-brain map at 1 mm isotropic resolution. CONCLUSION This study presents the impact of saturation and excitation parameters on ihMTsat SNR and resolution. We demonstrate the feasibility of high-resolution cortical myelin imaging using ihMTsat in less than 20 min.
Collapse
Affiliation(s)
- Christopher D Rowley
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Jennifer S W Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Ilana R Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Mark C Nelson
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christine L Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Québec, Canada
| |
Collapse
|
10
|
Alsop DC, Ercan E, Girard OM, Mackay AL, Michal CA, Varma G, Vinogradov E, Duhamel G. Inhomogeneous magnetization transfer imaging: Concepts and directions for further development. NMR IN BIOMEDICINE 2023; 36:e4808. [PMID: 35916067 DOI: 10.1002/nbm.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 05/23/2023]
Abstract
Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.
Collapse
Affiliation(s)
- David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ece Ercan
- MR Clinical Science, Philips, Best, The Netherlands
| | | | - Alex L Mackay
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Vinogradov
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
11
|
Taso M, Munsch F, Girard OM, Duhamel G, Alsop DC, Varma G. Fast-spin-echo versus rapid gradient-echo for 3D magnetization-prepared acquisitions: Application to inhomogeneous magnetization transfer. Magn Reson Med 2023; 89:550-564. [PMID: 36306334 PMCID: PMC10848167 DOI: 10.1002/mrm.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the benefits of fast spin echo (FSE) imaging over rapid gradient-echo (RAGE) for magnetization-prepared inhomogeneous magnetization transfer (ihMT) imaging. METHODS A 3D FSE sequence was modified to include an ihMT preparation (ihMT-FSE) with an optional CSF suppression based on an inversion-recovery (ihMT-FLAIR). After numeric simulations assessing SNR benefits of FSE and the potential impact of an additional inversion-recovery, ihMT-RAGE, ihMT-FSE, and ihMT-FLAIR sequences were compared in a group of six healthy volunteers, evaluating image quality, thermal, and physiological noise as well as quantification using an ihMT saturation (ihMTsat) approach. A preliminary exploration in the cervical spinal cord was also conducted in a group of three healthy volunteers. RESULTS Several fold improvements in thermal SNR were observed with ihMT-FSE in agreement with numerical simulations. However, we observed significantly higher physiological noise in ihMT-FSE compared to ihMT-RAGE that was mitigated in ihMT-FLAIR, which provided the best total SNR (+74% and +49% compared to ihMT-RAGE in the white and gray matter, P ≤ 0.004). IhMTsat quantification was successful in all cases with strong correlation between all sequences (r2 > 0.75). Early experiments showed potential for spinal cord imaging. CONCLUSIONS FSE generally offers higher SNR compared to gradient-echo based acquisitions for magnetization-prepared contrasts as illustrated here in the case of ihMT. However, physiological noise has a significant effect, but an inversion-recovery-based CSF suppression was shown to be efficient in mitigating effects of CSF motion.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | | - David C. Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Gopal Varma
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Inhomogeneous Magnetization Transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. Neuroimage 2023; 265:119785. [PMID: 36464096 DOI: 10.1016/j.neuroimage.2022.119785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.
Collapse
|
13
|
Jara H, Sakai O, Farrher E, Oros-Peusquens AM, Shah NJ, Alsop DC, Keenan KE. Primary Multiparametric Quantitative Brain MRI: State-of-the-Art Relaxometric and Proton Density Mapping Techniques. Radiology 2022; 305:5-18. [PMID: 36040334 PMCID: PMC9524578 DOI: 10.1148/radiol.211519] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantitative MRI (qMRI) parameters that represent the mobile ("free") and bound ("motion-restricted") proton pools. Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward accelerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refinement are identified as follows: (a) the biologic underpinnings of qMRI parameter values and their changes with age and/or disease and (b) the theoretical limitations implicitly built into most qMRI mapping algorithms that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural tissue modeling.
Collapse
Affiliation(s)
- Hernán Jara
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Osamu Sakai
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Ezequiel Farrher
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Ana-Maria Oros-Peusquens
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - N. Jon Shah
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - David C. Alsop
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Kathryn E. Keenan
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| |
Collapse
|
14
|
Chen G, Fu S, Chen P, Zhong S, Chen F, Qian L, Luo Z, Pan Y, Tang G, Jia Y, Huang L, Wang Y. Reduced myelin density in unmedicated major depressive disorder: An inhomogeneous magnetization transfer MRI study. J Affect Disord 2022; 300:114-120. [PMID: 34965392 DOI: 10.1016/j.jad.2021.12.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To detect the whole-brain reduced myelin density in unmedicated patients with major depressive disorder (MDD) using the inhomogeneous magnetization transfer (ihMT) imaging technology. Compared to other technologies, the ihMT provides high specificity and sensitivity to detect myelin. METHOD In this prospective study, fifty unmedicated patients (mean age 25.36 years, 40% men) with MDD and 57 age- and sex-matched healthy controls (HCs) (mean age 25.02 years, 53% men) were recruited between January 2019 and December 2019. All participants underwent ihMT imaging, and pseudo-quantitative ihMT (qihMT) and ihMT ratio (ihMTR) were obtained. The mean values of qihMT and ihMTR extracted from the 50 WM masks (extracted from the International Consortium for Brain Mapping, ICBM-152) in each participant were compared between participants in the MDD and HCs groups. The symptoms of patients were evaluated using the 24-item Hamilton Depression Rating scale (HDRS). RESULTS Compared with the HC group, the MDD group showed significantly decreased qihMT and ihMTR values in the left inferior fronto-occipital fasciculus (IFOF) (t = -4.057, p < 0.001; t = -3.662, p < 0.001) and the left uncinate fasciculus (UF) (t = -4.776, p < 0.001; t = -3.800, p < 0.001) after Bonferroni correction. The correlation analysis displayed a significant negative correlation between qihMT values of the left IFOF and HDRS total scores in patients with MDD (r = -0.390, p = 0.012). LIMITATIONS This was a cross-sectional study with a relative small sample. CONCLUSIONS These findings suggest the reduced myelin density in the IFOF and UF in patients with MDD, which might be associated with the pathophysiology of MDD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Youling Pan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
15
|
Hertanu A, Soustelle L, Le Troter A, Buron J, Le Priellec J, Carvalho VND, Cayre M, Durbec P, Varma G, Alsop DC, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part I. Isolation of long- and short-T 1D components by T 1D -filtering. Magn Reson Med 2022; 87:2313-2328. [PMID: 35037302 DOI: 10.1002/mrm.29139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To identify T1D -filtering methods, which can specifically isolate various ranges of T1D components as they may be sensitive to different microstructural properties. METHODS Modified Bloch-Provotorov equations describing a bi-T1D component biophysical model were used to simulate the inhomogeneous magnetization transfer (ihMT) signal from ihMTRAGE sequences at high RF power and low duty-cycle with different switching time values for the dual saturation experiment: Δt = 0.0, 0.8, 1.6, and 3.2 ms. Simulations were compared with experimental signals on the brain gray and white matter tissues of healthy mice at 7T. RESULTS The lengthening of Δt created ihMT high-pass T1D -filters, which efficiently eliminated the signal from T1D components shorter than 1 ms, while partially attenuating that of longer components (≥ 1 ms). Subtraction of ihMTR images obtained with Δt = 0.0 ms and Δt = 0.8 ms generated a new ihMT band-pass T1D -filter isolating short-T1D components in the 100-µs to 1-ms range. Simulated ihMTR values in central nervous system tissues were confirmed experimentally. CONCLUSION Long- and short-T1D components were successfully isolated with high RF power and low duty-cycle ihMT filters in the healthy mouse brain. Future studies should investigate the various T1D -range microstructural correlations in in vivo tissues.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Victor N D Carvalho
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
16
|
Hertanu A, Soustelle L, Buron J, Le Priellec J, Cayre M, Le Troter A, Varma G, Alsop DC, Durbec P, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part II. Investigating the long- and short-T 1D components correlation with myelin content. Comparison with R 1 and the macromolecular proton fraction. Magn Reson Med 2022; 87:2329-2346. [PMID: 35001427 DOI: 10.1002/mrm.29140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
17
|
Soustelle L, Troalen T, Hertanu A, Mchinda S, Ranjeva JP, Guye M, Varma G, Alsop DC, Duhamel G, Girard OM. A strategy to reduce the sensitivity of inhomogeneous magnetization transfer (ihMT) imaging to radiofrequency transmit field variations at 3 T. Magn Reson Med 2021; 87:1346-1359. [PMID: 34779020 DOI: 10.1002/mrm.29055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To minimize the sensitivity of inhomogeneous magnetization transfer gradient-echo (ihMT-GRE) imaging to radiofrequency (RF) transmit field ( B 1 + ) inhomogeneities at 3 T. METHODS The ihMT-GRE sequence was optimized by varying the concentration of the RF saturation energy over time, obtained by increasing the saturation pulse power while extending the sequence repetition time (TR). Different protocols were tested using numerical simulations and human in vivo experiments in the brain white matter (WM) of healthy subjects at 3 T. The sensitivity of the ihMT ratio (ihMTR) to B 1 + variations was investigated by comparing measurements obtained at nominal transmitter adjustments and following a 20% global B 1 + drop. The resulting relative variations (δihMTR ) were evaluated voxelwise as a function of the local B 1 + distribution. The reproducibility of the protocol providing minimal B 1 + bias was assessed in a test-retest experiment. RESULTS In line with simulations, ihMT-GRE experiments conducted at high concentration of the RF energy over time demonstrated strong reduction of the B 1 + inhomogeneity effects in the human WM. Under the optimal conditions of 350-ms TR and 3-µT root mean square (RMS) saturation power, 73% of all WM voxels presented δihMTR below 10%. Reproducibility analysis yielded a close-to-zero systematic bias (ΔihMTR = -0.081%) and a high correlation (ρ² = 0.977) between test and retest experiments. CONCLUSION Concentrating RF saturation energy in ihMT-GRE sequences mitigates the sensitivity of the ihMTR to B 1 + variations and allows for clinical-ready ihMT imaging at 3 T. This feature is of particular interest for high and ultra-high field applications.
Collapse
Affiliation(s)
- Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Samira Mchinda
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|