1
|
Grigis A, Gomez C, Frouin V, Duchesnay E, Uhrig L, Jarraya B. Revisiting the standard for modeling functional brain network activity: Application to consciousness. PLoS One 2024; 19:e0314598. [PMID: 39680526 DOI: 10.1371/journal.pone.0314598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Functional connectivity (FC) of resting-state fMRI time series can be estimated using methods that differ in their temporal sensitivity (static vs. dynamic) and the number of regions included in the connectivity estimation (derived from a prior atlas). This paper presents a novel framework for identifying and quantifying resting-state networks using resting-state fMRI recordings. The study employs a linear latent variable model to generate spatially distinct brain networks and their associated activities. It specifically addresses the atlas selection problem, and the statistical inference and multivariate analysis of the obtained brain network activities. The approach is demonstrated on a dataset of resting-state fMRI recordings from monkeys under different anesthetics using static FC. Our results suggest that two networks, one fronto-parietal and cingular and another temporo-parieto-occipital (posterior brain) strongly influences shifts in consciousness, especially between anesthesia and wakefulness. Interestingly, this observation aligns with the two prominent theories of consciousness: the global neural workspace and integrated information theories of consciousness. The proposed method is also able to decipher the level of anesthesia from the brain network activities. Overall, we provide a framework that can be effectively applied to other datasets and may be particularly useful for the study of disorders of consciousness.
Collapse
Affiliation(s)
- Antoine Grigis
- Université Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
| | - Chloé Gomez
- Université Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, Gif-sur-Yvette, France
| | - Vincent Frouin
- Université Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
| | | | - Lynn Uhrig
- Université Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, Gif-sur-Yvette, France
| | - Béchir Jarraya
- Université Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, Gif-sur-Yvette, France
- Université Paris-Saclay (UVSQ), Neuroscience Pole, Foch Hospital, Suresnes, France
| |
Collapse
|
2
|
Tang BL. Debates on humanization of human-animal brain chimeras - are we putting the cart before the horses? MEDICINE, HEALTH CARE, AND PHILOSOPHY 2024; 27:359-366. [PMID: 38797779 DOI: 10.1007/s11019-024-10209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Research on human-animal chimeras have elicited alarms and prompted debates. Those involving the generation of chimeric brains, in which human brain cells become anatomically and functionally intertwined with their animal counterparts in varying ratios, either via xenografts or embryonic co-development, have been considered the most problematic. The moral issues stem from a potential for "humanization" of the animal brain, as well as speculative changes to the host animals' consciousness or sentience, with consequential alteration in the animal hosts' moral status. However, critical background knowledge appears to be missing to resolve these debates. Firstly, there is no consensus on animal sentience vis-à-vis that of humans, and no established methodology that would allow a wholesome and objective assessment of changes in animal sentience resulting from the introduction of human brain cells. Knowledge in interspecies comparative neuropsychology that could allow effective demarcation of a state of "humanization" is also lacking. Secondly, moral status as a philosophical construct has no scientific and objective points of reference. Either changes in sentience or humanization effects would remain unclear unless there are some neuroscientific research grounding. For a bioethical stance based on moral status of human-animal brain chimera to make meaningful contributions to regulatory policies, it might first need to be adequately informed by, and with its arguments constructed, in a manner that are factually in line with the science. In may be prudent for approved research projects involving the generation of human-animal brain chimera to have a mandatory component of assessing plausible changes in sentience.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Dr, Singapore, 117596, Singapore.
| |
Collapse
|
3
|
Ensel S, Uhrig L, Ozkirli A, Hoffner G, Tasserie J, Dehaene S, Van De Ville D, Jarraya B, Pirondini E. Transient brain activity dynamics discriminate levels of consciousness during anesthesia. Commun Biol 2024; 7:716. [PMID: 38858589 PMCID: PMC11164921 DOI: 10.1038/s42003-024-06335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.
Collapse
Affiliation(s)
- Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Uhrig
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Ayberk Ozkirli
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Guylaine Hoffner
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
| | - Jordy Tasserie
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Collège de France, Paris, France
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Béchir Jarraya
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Université Paris-Saclay (UVSQ), Saclay, France
- Neuroscience Pole, Foch Hospital, Suresnes, France
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Aquilué-Llorens D, Goldman JS, Destexhe A. High-Density Exploration of Activity States in a Multi-Area Brain Model. Neuroinformatics 2024; 22:75-87. [PMID: 37981636 PMCID: PMC10917847 DOI: 10.1007/s12021-023-09647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/21/2023]
Abstract
To simulate whole brain dynamics with only a few equations, biophysical, mesoscopic models of local neuron populations can be connected using empirical tractography data. The development of mesoscopic mean-field models of neural populations, in particular, the Adaptive Exponential (AdEx mean-field model), has successfully summarized neuron-scale phenomena leading to the emergence of global brain dynamics associated with conscious (asynchronous and rapid dynamics) and unconscious (synchronized slow-waves, with Up-and-Down state dynamics) brain states, based on biophysical mechanisms operating at cellular scales (e.g. neuromodulatory regulation of spike-frequency adaptation during sleep-wake cycles or anesthetics). Using the Virtual Brain (TVB) environment to connect mean-field AdEx models, we have previously simulated the general properties of brain states, playing on spike-frequency adaptation, but have not yet performed detailed analyses of other parameters possibly also regulating transitions in brain-scale dynamics between different brain states. We performed a dense grid parameter exploration of the TVB-AdEx model, making use of High Performance Computing. We report a remarkable robustness of the effect of adaptation to induce synchronized slow-wave activity. Moreover, the occurrence of slow waves is often paralleled with a closer relation between functional and structural connectivity. We find that hyperpolarization can also generate unconscious-like synchronized Up and Down states, which may be a mechanism underlying the action of anesthetics. We conclude that the TVB-AdEx model reveals large-scale properties identified experimentally in sleep and anesthesia.
Collapse
Affiliation(s)
- David Aquilué-Llorens
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), 91400, Saclay, France.
- Starlab Barcelona SL, Neuroscience BU, Av Tibidabo 47 bis, Barcelona, Spain.
| | - Jennifer S Goldman
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), 91400, Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), 91400, Saclay, France.
| |
Collapse
|
5
|
Baruzzi V, Lodi M, Sorrentino F, Storace M. Bridging functional and anatomical neural connectivity through cluster synchronization. Sci Rep 2023; 13:22430. [PMID: 38104227 PMCID: PMC10725511 DOI: 10.1038/s41598-023-49746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The dynamics of the brain results from the complex interplay of several neural populations and is affected by both the individual dynamics of these areas and their connection structure. Hence, a fundamental challenge is to derive models of the brain that reproduce both structural and functional features measured experimentally. Our work combines neuroimaging data, such as dMRI, which provides information on the structure of the anatomical connectomes, and fMRI, which detects patterns of approximate synchronous activity between brain areas. We employ cluster synchronization as a tool to integrate the imaging data of a subject into a coherent model, which reconciles structural and dynamic information. By using data-driven and model-based approaches, we refine the structural connectivity matrix in agreement with experimentally observed clusters of brain areas that display coherent activity. The proposed approach leverages the assumption of homogeneous brain areas; we show the robustness of this approach when heterogeneity between the brain areas is introduced in the form of noise, parameter mismatches, and connection delays. As a proof of concept, we apply this approach to MRI data of a healthy adult at resting state.
Collapse
Affiliation(s)
| | - Matteo Lodi
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy
| | - Francesco Sorrentino
- Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marco Storace
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy.
| |
Collapse
|
6
|
Pagani M, Gutierrez-Barragan D, de Guzman AE, Xu T, Gozzi A. Mapping and comparing fMRI connectivity networks across species. Commun Biol 2023; 6:1238. [PMID: 38062107 PMCID: PMC10703935 DOI: 10.1038/s42003-023-05629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - A Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ting Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
7
|
Bayne T, Frohlich J, Cusack R, Moser J, Naci L. Consciousness in the cradle: on the emergence of infant experience. Trends Cogn Sci 2023; 27:1135-1149. [PMID: 37838614 PMCID: PMC10660191 DOI: 10.1016/j.tics.2023.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/16/2023]
Abstract
Although each of us was once a baby, infant consciousness remains mysterious and there is no received view about when, and in what form, consciousness first emerges. Some theorists defend a 'late-onset' view, suggesting that consciousness requires cognitive capacities which are unlikely to be in place before the child's first birthday at the very earliest. Other theorists defend an 'early-onset' account, suggesting that consciousness is likely to be in place at birth (or shortly after) and may even arise during the third trimester. Progress in this field has been difficult, not just because of the challenges associated with procuring the relevant behavioral and neural data, but also because of uncertainty about how best to study consciousness in the absence of the capacity for verbal report or intentional behavior. This review examines both the empirical and methodological progress in this field, arguing that recent research points in favor of early-onset accounts of the emergence of consciousness.
Collapse
Affiliation(s)
- Tim Bayne
- Monash University, Melbourne, VIC, Australia; Brain, Mind, and Consciousness Program, Canadian Institute for Advanced Research, Toronto, Canada.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany; Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Rhodri Cusack
- Thomas Mitchell Professor of Cognitive Neuroscience, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Lorina Naci
- Trinity College Institute of Neuroscience and Global Brain Health Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
8
|
Bandyopadhyay A, Ghosh S, Biswas D, Chakravarthy VS, S Bapi R. A phenomenological model of whole brain dynamics using a network of neural oscillators with power-coupling. Sci Rep 2023; 13:16935. [PMID: 37805660 PMCID: PMC10560247 DOI: 10.1038/s41598-023-43547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
We present a general, trainable oscillatory neural network as a large-scale model of brain dynamics. The model has a cascade of two stages - an oscillatory stage and a complex-valued feedforward stage - for modelling the relationship between structural connectivity and functional connectivity from neuroimaging data under resting brain conditions. Earlier works of large-scale brain dynamics that used Hopf oscillators used linear coupling of oscillators. A distinctive feature of the proposed model employs a novel form of coupling known as power coupling. Oscillatory networks based on power coupling can accurately model arbitrary multi-dimensional signals. Training the lateral connections in the oscillator layer is done by a modified form of Hebbian learning, whereas a variation of the complex backpropagation algorithm does training in the second stage. The proposed model can not only model the empirical functional connectivity with remarkable accuracy (correlation coefficient between simulated and empirical functional connectivity- 0.99) but also identify default mode network regions. In addition, we also inspected how structural loss in the brain can cause significant aberration in simulated functional connectivity and functional connectivity dynamics; and how it can be restored with optimized model parameters by an in silico perturbational study.
Collapse
Affiliation(s)
| | - Sayan Ghosh
- Indian Institue of Technology Madras, Biotechnology, Chennai, 600036, India
| | - Dipayan Biswas
- Indian Institue of Technology Madras, Biotechnology, Chennai, 600036, India
| | | | - Raju S Bapi
- IIIT Hyderabad, Biotechnology, Hyderabad, 500008, India
| |
Collapse
|
9
|
Lorents A, Colin ME, Bjerke IE, Nougaret S, Montelisciani L, Diaz M, Verschure P, Vezoli J. Human Brain Project Partnering Projects Meeting: Status Quo and Outlook. eNeuro 2023; 10:ENEURO.0091-23.2023. [PMID: 37669867 PMCID: PMC10481639 DOI: 10.1523/eneuro.0091-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
As the European Flagship Human Brain Project (HBP) ends in September 2023, a meeting dedicated to the Partnering Projects (PPs), a collective of independent research groups that partnered with the HBP, was held on September 4-7, 2022. The purpose of this meeting was to allow these groups to present their results, reflect on their collaboration with the HBP and discuss future interactions with the European Research Infrastructure (RI) EBRAINS that has emerged from the HBP. In this report, we share the tour-de-force that the Partnering Projects that were present in the meeting have made in furthering knowledge concerning various aspects of Brain Research with the HBP. We describe briefly major achievements of the HBP Partnering Projects in terms of a systems-level understanding of the functional architecture of the brain and its possible emulation in artificial systems. We then recapitulate open discussions with EBRAINS representatives about the evolution of EBRAINS as a sustainable Research Infrastructure for the Partnering Projects after the HBP, and also for the wider scientific community.
Collapse
Affiliation(s)
| | | | - Ingvild Elise Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - Simon Nougaret
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Luca Montelisciani
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Marissa Diaz
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Paul Verschure
- Donders Center for Neuroscience (DCN-FNWI), Radboud University, Nijmegen 6500HD, The Netherlands
| | - Julien Vezoli
- Ernst Strügmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
- Institut National de la Santé et de la Recherche Médicale Unité 1208, Stem Cell and Brain Research Institute, Université Claude Bernard Lyon 1, Bron 69500, France
| |
Collapse
|
10
|
Kim JH, De Asis-Cruz J, Cook KM, Limperopoulos C. Gestational age-related changes in the fetal functional connectome: in utero evidence for the global signal. Cereb Cortex 2023; 33:2302-2314. [PMID: 35641159 PMCID: PMC9977380 DOI: 10.1093/cercor/bhac209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The human brain begins to develop in the third gestational week and rapidly grows and matures over the course of pregnancy. Compared to fetal structural neurodevelopment, less is known about emerging functional connectivity in utero. Here, we investigated gestational age (GA)-associated in vivo changes in functional brain connectivity during the second and third trimesters in a large dataset of 110 resting-state functional magnetic resonance imaging scans from a cohort of 95 healthy fetuses. Using representational similarity analysis, a multivariate analytical technique that reveals pair-wise similarity in high-order space, we showed that intersubject similarity of fetal functional connectome patterns was strongly related to between-subject GA differences (r = 0.28, P < 0.01) and that GA sensitivity of functional connectome was lateralized, especially at the frontal area. Our analysis also revealed a subnetwork of connections that were critical for predicting age (mean absolute error = 2.72 weeks); functional connectome patterns of individual fetuses reliably predicted their GA (r = 0.51, P < 0.001). Lastly, we identified the primary principal brain network that tracked fetal brain maturity. The main network showed a global synchronization pattern resembling global signal in the adult brain.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Kevin M Cook
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Corresponding author: Developing Brain Institute, Children’s National, 111 Michigan Ave. N.W., Washington D.C. 20010.
| |
Collapse
|
11
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Sporns O. The complex brain: connectivity, dynamics, information. Trends Cogn Sci 2022; 26:1066-1067. [PMID: 36207260 DOI: 10.1016/j.tics.2022.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
Most would agree, the brain is complex. But, beyond metaphor, does the brain's complexity demand a paradigm shift in how we study its structure and function? I argue that complexity manifests in three domains - connectivity, dynamics, and information - and that unlocking their interactions will greatly advance our understanding of brain and cognition.
Collapse
Affiliation(s)
- Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
13
|
Fuentes N, Garcia A, Guevara R, Orofino R, Mateos DM. Complexity of Brain Dynamics as a Correlate of Consciousness in Anaesthetized Monkeys. Neuroinformatics 2022; 20:1041-1054. [PMID: 35511398 DOI: 10.1007/s12021-022-09586-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/31/2022]
Abstract
The use of anaesthesia is a fundamental tool in the investigation of consciousness. Anesthesia procedures allow to investigate different states of consciousness from sedation to deep anesthesia within controlled scenarios. In this study we use information quantifiers to measure the complexity of electrocorticogram recordings in monkeys. We apply these metrics to compare different stages of general anesthesia for evaluating consciousness in several anesthesia protocols. We find that the complexity of brain activity can be used as a correlate of consciousness. For two of the anaesthetics used, propofol and medetomidine, we find that the anaesthetised state is accompanied by a reduction in the complexity of brain activity. On the other hand we observe that use of ketamine produces an increase in complexity measurements. We relate this observation with increase activity within certain brain regions associated with the ketamine used doses. Our measurements indicate that complexity of brain activity is a good indicator for a general evaluation of different levels of consciousness awareness, both in anesthetized and non anesthetizes states.
Collapse
Affiliation(s)
- Nicolas Fuentes
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alexis Garcia
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ramón Guevara
- Department of Physics and Astronomy, University of Padua, Padua, Italy
| | - Roberto Orofino
- Hospital de Ninos Pedro de Elizalde, Buenos Aires, Argentina.,Hospital Español, La Plata, Argentina
| | - Diego M Mateos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Ciencia y Tecnología. Universidad Autónoma de Entre Ríos (UADER), Oro Verde, Entre Ríos, Argentina. .,Instituto de Matemática Aplicada del Litoral (IMAL-CONICET-UNL), CCT CONICET, Santa Fé, Argentina.
| |
Collapse
|
14
|
Buendía V, Villegas P, Burioni R, Muñoz MA. The broad edge of synchronization: Griffiths effects and collective phenomena in brain networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200424. [PMID: 35599563 DOI: 10.1098/rsta.2020.0424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many of the amazing functional capabilities of the brain are collective properties stemming from the interactions of large sets of individual neurons. In particular, the most salient collective phenomena in brain activity are oscillations, which require the synchronous activation of many neurons. Here, we analyse parsimonious dynamical models of neural synchronization running on top of synthetic networks that capture essential aspects of the actual brain anatomical connectivity such as a hierarchical-modular and core-periphery structure. These models reveal the emergence of complex collective states with intermediate and flexible levels of synchronization, halfway in the synchronous-asynchronous spectrum. These states are best described as broad Griffiths-like phases, i.e. an extension of standard critical points that emerge in structurally heterogeneous systems. We analyse different routes (bifurcations) to synchronization and stress the relevance of 'hybrid-type transitions' to generate rich dynamical patterns. Overall, our results illustrate the complex interplay between structure and dynamics, underlining key aspects leading to rich collective states needed to sustain brain functionality. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Victor Buendía
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Pablo Villegas
- IMT Institute for Advanced Studies, Piazza San Ponziano 6 55100 Lucca, Italy
| | - Raffaella Burioni
- Dipartimento di Matematica, Fisica e Informatica, Università di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy
- INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy
| | - Miguel A Muñoz
- Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional. Universidad de Granada, E-18071 Granada, Spain
| |
Collapse
|
15
|
Deco G, Sanz Perl Y, Bocaccio H, Tagliazucchi E, Kringelbach ML. The INSIDEOUT framework provides precise signatures of the balance of intrinsic and extrinsic dynamics in brain states. Commun Biol 2022; 5:572. [PMID: 35688893 PMCID: PMC9187708 DOI: 10.1038/s42003-022-03505-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
Finding precise signatures of different brain states is a central, unsolved question in neuroscience. We reformulated the problem to quantify the 'inside out' balance of intrinsic and extrinsic brain dynamics in brain states. The difference in brain state can be described as differences in the detailed causal interactions found in the underlying intrinsic brain dynamics. We used a thermodynamics framework to quantify the breaking of the detailed balance captured by the level of asymmetry in temporal processing, i.e. the arrow of time. Specifically, the temporal asymmetry was computed by the time-shifted correlation matrices for the forward and reversed time series, reflecting the level of non-reversibility/non-equilibrium. We found precise, distinguishing signatures in terms of the reversibility and hierarchy of large-scale dynamics in three radically different brain states (awake, deep sleep and anaesthesia) in electrocorticography data from non-human primates. Significantly lower levels of reversibility were found in deep sleep and anaesthesia compared to wakefulness. Non-wakeful states also showed a flatter hierarchy, reflecting the diversity of the reversibility across the brain. Overall, this provides signatures of the breaking of detailed balance in different brain states, perhaps reflecting levels of conscious awareness.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
- School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, 3800, Australia.
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Hernan Bocaccio
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Biophysical Model: A Promising Method in the Study of the Mechanism of Propofol: A Narrative Review. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8202869. [PMID: 35619772 PMCID: PMC9129930 DOI: 10.1155/2022/8202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The physiological and neuroregulatory mechanism of propofol is largely based on very limited knowledge. It is one of the important puzzling issues in anesthesiology and is of great value in both scientific and clinical fields. It is acknowledged that neural networks which are comprised of a number of neural circuits might be involved in the anesthetic mechanism. However, the mechanism of this hypothesis needs to be further elucidated. With the progress of artificial intelligence, it is more likely to solve this problem through using artificial neural networks to perform temporal waveform data analysis and to construct biophysical computational models. This review focuses on current knowledge regarding the anesthetic mechanism of propofol, an intravenous general anesthetic, by constructing biophysical computational models.
Collapse
|
17
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard JD, Williams GB, Craig MM, Finoia P, Peattie ARD, Coppola P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. Whole-brain modelling identifies distinct but convergent paths to unconsciousness in anaesthesia and disorders of consciousness. Commun Biol 2022; 5:384. [PMID: 35444252 PMCID: PMC9021270 DOI: 10.1038/s42003-022-03330-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain entertains rich spatiotemporal dynamics, which are drastically reconfigured when consciousness is lost due to anaesthesia or disorders of consciousness (DOC). Here, we sought to identify the neurobiological mechanisms that explain how transient pharmacological intervention and chronic neuroanatomical injury can lead to common reconfigurations of neural activity. We developed and systematically perturbed a neurobiologically realistic model of whole-brain haemodynamic signals. By incorporating PET data about the cortical distribution of GABA receptors, our computational model reveals a key role of spatially-specific local inhibition for reproducing the functional MRI activity observed during anaesthesia with the GABA-ergic agent propofol. Additionally, incorporating diffusion MRI data obtained from DOC patients reveals that the dynamics that characterise loss of consciousness can also emerge from randomised neuroanatomical connectivity. Our results generalise between anaesthesia and DOC datasets, demonstrating how increased inhibition and connectome perturbation represent distinct neurobiological paths towards the characteristic activity of the unconscious brain.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Paola Finoia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Zhuang W, Wang J, Chu C, Wei X, Yi G, Dong Y, Cai L. Disrupted Control Architecture of Brain Network in Disorder of Consciousness. IEEE Trans Neural Syst Rehabil Eng 2022; 30:400-409. [PMID: 35143400 DOI: 10.1109/tnsre.2022.3150834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human brain controls various cognitive functions via the functional coordination of multiple brain regions in an efficient and robust way. However, the relationship between consciousness state and the control mode of brain networks is poorly explored. Using multi-channel EEG, the present study aimed to characterize the abnormal control architecture of functional brain networks in the patients with disorders of consciousness (DOC). Resting state EEG data were collected from 40 DOC patients with different consciousness levels and 24 healthy subjects. Functional brain networks were constructed in five different EEG frequency bands and the broadband in the source level. Subsequently, a control architecture framework based on the minimum dominating set was applied to investigate the of control mode of functional brain networks for the subjects with different conscious states. Results showed that regardless of the consciousness levels, the functional networks of human brain operate in a distributed and overlapping control architecture different from that of random networks. Compared to the healthy controls, the patients have a higher control cost manifested by more minimum dominating nodes and increased degree of distributed control, especially in the alpha band. The ability to withstand network attack for the control architecture is positive correlated with the consciousness levels. The distributed of control increased correlation levels with Coma Recovery Scale-Revised score and improved separation between unresponsive wakefulness syndrome and minimal consciousness state. These findings may benefit our understanding of consciousness and provide potential biomarkers for the assessment of consciousness levels.
Collapse
|
19
|
Boerwinkle VL, Sussman BL, Manjón I, Mirea L, Suleman S, Wyckoff SN, Bonnell A, Orgill A, Tom DJ. Association of network connectivity via resting state functional MRI with consciousness, mortality, and outcomes in neonatal acute brain injury. Neuroimage Clin 2022; 34:102962. [PMID: 35152054 PMCID: PMC8851268 DOI: 10.1016/j.nicl.2022.102962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND An accurate and comprehensive test of integrated brain network function is needed for neonates during the acute brain injury period to inform on morbidity. This retrospective cohort study assessed whether integrated brain network function acquired by resting state functional MRI during the acute period in neonates with brain injury, is associated with acute exam, neonatal mortality, and 6-month outcomes. METHODS Study subjects included 40 consecutive neonates with resting state functional MRI acquired within 31 days after suspected brain insult from March 2018 to July 2019 at Phoenix Children's Hospital. Acute-period exam and test results were assigned ordinal scores based on severity as documented by respective treating specialists. Analyses (Fisher exact, Wilcoxon-rank sum test, ordinal/multinomial logistic regression) examined association of resting state networks with demographics, presentation, neurological exam, electroencephalogram, anatomical MRI, magnetic resonance spectroscopy, passive task functional MRI, and outcomes of discharge condition, outpatient development, motor tone, seizure, and mortality. RESULTS Subjects had a mean (standard deviation) gestational age of 37.8 (2.6) weeks, a majority were male (63%), with a diagnosis of hypoxic ischemic encephalopathy (68%). Findings at birth included mild distress (48%), moderately abnormal neurological exam (33%), and consciousness characterized as awake but irritable (40%). Significant associations after multiple testing corrections were detected for resting state networks: basal ganglia with outpatient developmental delay (odds ratio [OR], 14.5; 99.4% confidence interval [CI], 2.00-105; P < .001) and motor tone/weakness (OR, 9.98; 99.4% CI, 1.72-57.9; P < .001); language/frontoparietal network with discharge condition (OR, 5.13; 99.4% CI, 1.22-21.5; P = .002) and outpatient developmental delay (OR, 4.77; 99.4% CI, 1.21-18.7; P=.002); default mode network with discharge condition (OR, 3.72; 99.4% CI, 1.01-13.78; P=.006) and neurological exam (P = .002 (FE); OR, 11.8; 99.4% CI, 0.73-191; P = .01 (OLR)); and seizure onset zone with motor tone/weakness (OR, 3.31; 99.4% CI, 1.08-10.1; P=.003). Resting state networks were not detected in three neonates, who died prior to discharge. CONCLUSIONS This study provides level 3 evidence (OCEBM Levels of Evidence Working Group) demonstrating that in neonatal acute brain injury, the degree of abnormality of resting state networks is associated with acute exam and outcomes. Total lack of brain network detection was only found in patients who did not survive.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA.
| | - Bethany L Sussman
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Iliana Manjón
- University of Arizona College of Medicine - Tucson, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Lucia Mirea
- Department of Clinical Research, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Saher Suleman
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Sarah N Wyckoff
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Alexandra Bonnell
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Andrew Orgill
- Department of Clinical Research, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Deborah J Tom
- Division of Neonatology, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| |
Collapse
|
20
|
Northoff G, Zilio F. Temporo-spatial Theory of Consciousness (TTC) - Bridging the gap of neuronal activity and phenomenal states. Behav Brain Res 2022; 424:113788. [PMID: 35149122 DOI: 10.1016/j.bbr.2022.113788] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/22/2023]
Abstract
Consciousness and its neural mechanisms remain a mystery. Current neuroscientific theories focus predominantly on the external input/stimulus and the associated stimulus-related activity during conscious contents. Despite all progress, we encounter two gaps: (i) a gap between spontaneous and stimulus-related activity; (ii) a gap between neuronal and phenomenal features. A novel, different, and unique approach, Temporo-spatial theory of consciousness (TTC) aims to bridge both gaps. The TTC focuses on the brain's spontaneous activity and how its spatial topography and temporal dynamic shape stimulus-related activity and resurface in the corresponding spatial and temporal features of consciousness, i.e., 'common currency'. The TTC introduces four temporo-spatial mechanisms: expansion, globalization, alignment, and nestedness. These are associated with distinct dimensions of consciousness including phenomenal content, access, form/structure, and level/state, respectively. Following up on the first introduction of the TTC in 2017, we review updates, further develop these temporo-spatial mechanisms, and postulate specific neurophenomenal hypotheses. We conclude that the TTC offers a viable approach for (i) linking spontaneous and stimulus-related activity in conscious states; (ii) determining specific neuronal and neurophenomenal mechanisms for the distinct dimensions of consciousness; (iii) an integrative and unifying framework of different neuroscientific theories of consciousness; and (iv) offers novel empirically grounded conceptual assumptions about the biological and ontological nature of consciousness and its relation to the brain.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy.
| |
Collapse
|
21
|
Lei L, Liu K, Yang Y, Doubliez A, Hu X, Xu Y, Zhou Y. Spatio-temporal analysis of EEG features during consciousness recovery in patients with disorders of consciousness. Clin Neurophysiol 2021; 133:135-144. [PMID: 34864400 DOI: 10.1016/j.clinph.2021.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE As consciousness recovery is not only dynamic but also involves interactions between various brain regions, elucidating the mechanism of recovery requires tracking cortical activity in spatio-temporal dimensions. METHODS We tracked the cortical activities of 40 patients (mean age: 54.38 years; 28 males; 21 patients with minimally conscious states) with disorders of consciousness, and collected a total of 156 electroencephalographic signals. We investigated the longitudinal changes in EEG nonlinear dynamic features (i.e., approximate entropy, sample entropy, and Lempel-Ziv complexity) and relative wavelet energy along with consciousness recovery. RESULTS Global EEG features showed a non-monotonic trend during consciousness recovery (P < 0.05). When the level of consciousness of patients was transferred to a minimally conscious state from an unresponsive wakefulness syndrome/ vegetative state, an inflection point appeared in the EEG features. The EEG feature change trends between the injured and uninjured areas were dissimilar (P < 0.05). Importantly, the degree of dissimilarity increased non-monotonically across the levels of consciousness (P < 0.05). CONCLUSIONS EEG recovery was non-monotonic and dissimilar in spatio-temporal dimensions, with an inflection point. SIGNIFICANCE These findings further clarify the process of consciousness recovery and provide assistance in exploring the mechanism of consciousness recovery.
Collapse
Affiliation(s)
- Ling Lei
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Kehong Liu
- Wu Jing Hospital, Rehabilitation Center, Hangzhou, Zhejiang 310051, China
| | - Yong Yang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China.
| | - Alice Doubliez
- Paris Descartes University, 45 rue des Saints-Peres, Paris 75006, France
| | - Xiaohua Hu
- Wu Jing Hospital, Rehabilitation Center, Hangzhou, Zhejiang 310051, China
| | - Ying Xu
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Yixing Zhou
- First People's Hospital of Zhaoqing City, No. 9 Donggang East Road, Duanzhou District, Zhaoqing 526060, China.
| |
Collapse
|
22
|
Galadí JA, Silva Pereira S, Sanz Perl Y, Kringelbach ML, Gayte I, Laufs H, Tagliazucchi E, Langa JA, Deco G. Capturing the non-stationarity of whole-brain dynamics underlying human brain states. Neuroimage 2021; 244:118551. [PMID: 34506913 DOI: 10.1016/j.neuroimage.2021.118551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Brain dynamics depicts an extremely complex energy landscape that changes over time, and its characterisation is a central unsolved problem in neuroscience. We approximate the non-stationary landscape sustained by the human brain through a novel mathematical formalism that allows us characterise the attractor structure, i.e. the stationary points and their connections. Due to its time-varying nature, the structure of the global attractor and the corresponding number of energy levels changes over time. We apply this formalism to distinguish quantitatively between the different human brain states of wakefulness and different stages of sleep, as a step towards future clinical applications.
Collapse
Affiliation(s)
- J A Galadí
- Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain; Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - S Silva Pereira
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Y Sanz Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Argentina; Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Argentina
| | - M L Kringelbach
- Department of Psychiatry, University of Oxford, UK; Centre for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal
| | - I Gayte
- Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain
| | - H Laufs
- Department of Neurology, Christian-Albrechts-University Kiel, Germany
| | - E Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Argentina
| | - J A Langa
- Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain
| | - G Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Spain
| |
Collapse
|
23
|
Luppi AI, Mediano PAM, Rosas FE, Harrison DJ, Carhart-Harris RL, Bor D, Stamatakis EA. What it is like to be a bit: an integrated information decomposition account of emergent mental phenomena. Neurosci Conscious 2021; 2021:niab027. [PMID: 34804593 PMCID: PMC8600547 DOI: 10.1093/nc/niab027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
A central question in neuroscience concerns the relationship between consciousness and its physical substrate. Here, we argue that a richer characterization of consciousness can be obtained by viewing it as constituted of distinct information-theoretic elements. In other words, we propose a shift from quantification of consciousness-viewed as integrated information-to its decomposition. Through this approach, termed Integrated Information Decomposition (ΦID), we lay out a formal argument that whether the consciousness of a given system is an emergent phenomenon depends on its information-theoretic composition-providing a principled answer to the long-standing dispute on the relationship between consciousness and emergence. Furthermore, we show that two organisms may attain the same amount of integrated information, yet differ in their information-theoretic composition. Building on ΦID's revised understanding of integrated information, termed ΦR, we also introduce the notion of ΦR-ing ratio to quantify how efficiently an entity uses information for conscious processing. A combination of ΦR and ΦR-ing ratio may provide an important way to compare the neural basis of different aspects of consciousness. Decomposition of consciousness enables us to identify qualitatively different 'modes of consciousness', establishing a common space for mapping the phenomenology of different conscious states. We outline both theoretical and empirical avenues to carry out such mapping between phenomenology and information-theoretic modes, starting from a central feature of everyday consciousness: selfhood. Overall, ΦID yields rich new ways to explore the relationship between information, consciousness, and its emergence from neural dynamics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - David J Harrison
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge CB2 3RH, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
24
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
25
|
Mäki-Marttunen V. Pupil-based States of Brain Integration across Cognitive States. Neuroscience 2021; 471:61-71. [PMID: 34303781 DOI: 10.1016/j.neuroscience.2021.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023]
Abstract
Arousal is a potent mechanism that provides the brain with functional flexibility and adaptability to external conditions. Within the wake state, arousal levels driven by activity in the neuromodulatory systems are related to specific signatures of neural activation and brain synchrony. However, direct evidence is still lacking on the varying effects of arousal on macroscopic brain characteristics and across a variety of cognitive states in humans. Using a concurrent fMRI-pupillometry approach, we used pupil size as a proxy for arousal and obtained patterns of brain integration associated with increasing arousal levels. We carried out this analysis on resting-state data and data from two attentional tasks implicating different cognitive processes. We found that an increasing level of arousal was related to a state of increased brain integration. This effect was prominent in the salience, visual and default-mode networks in all conditions, while other regions showed task-specificity. Increased integration in the salience network was also related to faster pupil dilation in the two attentional tasks. Furthermore, task performance was related to arousal level, with lower accuracy at higher level of arousal. Taken together, our study provides evidence in humans for pupil size as an index of brain network state, and supports the role of arousal as a switch that drives brain coordination in specific brain regions according to the cognitive state.
Collapse
Affiliation(s)
- Verónica Mäki-Marttunen
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Pieter de la Court, Wassenaarseweg 52, 2333 AK Leiden, Netherlands.
| |
Collapse
|
26
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Menon DK, Stamatakis EA. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum Brain Mapp 2021; 42:2802-2822. [PMID: 33738899 PMCID: PMC8127159 DOI: 10.1002/hbm.25405] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
The dynamic interplay of integration and segregation in the brain is at the core of leading theoretical accounts of consciousness. The human brain dynamically alternates between a sub-state where integration predominates, and a predominantly segregated sub-state, with different roles in supporting cognition and behaviour. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from healthy volunteers before, during, and after loss of responsiveness induced with different concentrations of the inhalational anaesthetic, sevoflurane. We show that dynamic states characterised by high brain integration are especially vulnerable to general anaesthesia, exhibiting attenuated complexity and diminished small-world character. Crucially, these effects are reversed upon recovery, demonstrating their association with consciousness. Higher doses of sevoflurane (3% vol and burst-suppression) also compromise the temporal balance of integration and segregation in the human brain. Additionally, we demonstrate that reduced anticorrelations between the brain's default mode and executive control networks dynamically reconfigure depending on the brain's state of integration or segregation. Taken together, our results demonstrate that the integrated sub-state of brain connectivity is especially vulnerable to anaesthesia, in terms of both its complexity and information capacity, whose breakdown represents a generalisable biomarker of loss of consciousness and its recovery.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Andreas Ranft
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of NeurologyAsklepios ClinicBad TölzGermany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - David K. Menon
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Wolfon Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Emmanuel A. Stamatakis
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|