1
|
Huizhen Tang J, Solomon SS, Kohn A, Sussman ES. Distinguishing expectation and attention effects in processing temporal patterns of visual input. Brain Cogn 2024; 182:106228. [PMID: 39461075 PMCID: PMC11645222 DOI: 10.1016/j.bandc.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The current study investigated how the brain sets up expectations from stimulus regularities by evaluating the neural responses to expectations driven implicitly (by the stimuli themselves) and explicitly (by task demands). How the brain uses prior information to create expectations and what role attention plays in forming or holding predictions to efficiently respond to incoming sensory information is still debated. We presented temporal patterns of visual input while recording EEG under two different task conditions. When the patterns were task-relevant and pattern recognition was required to perform the button press task, three different event-related brain potentials (ERPs) were elicited, each reflecting a different aspect of pattern expectation. In contrast, when the patterns were task-irrelevant, none of the neural indicators of pattern recognition or pattern violation detection were observed to the same temporally structured sequences. Thus, results revealed a clear distinction between expectation and attention that was prompted by task requirements. These results provide complementary pieces of evidence that implicit exposure to a stimulus pattern may not be sufficient to drive neural effects of expectations that lead to predictive error responses. Task-driven attentional control can dissociate from stimulus-driven expectations, to effectively minimize distracting information and maximize attentional regulation.
Collapse
Affiliation(s)
- Joann Huizhen Tang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Selina S Solomon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Adam Kohn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Vision Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Elyse S Sussman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Otorhinolaryngology - Head & Neck Surgery, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Zheng Z, Wang J. Interbrain neural correlates of self and other integration in joint statistical learning. NPJ SCIENCE OF LEARNING 2024; 9:68. [PMID: 39567522 PMCID: PMC11579319 DOI: 10.1038/s41539-024-00280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
While statistical learning is often studied individually, its collective representation through self-other integration remains unclear. This study examines dynamic self-other integration and its multi-brain mechanism using simultaneous recordings from dyads. Participants (N = 112) each repeatedly responded to half of a fixed stimulus sequence with either an active partner (joint context) or a passive observer (baseline context). Significant individual statistical learning was evident in the joint context, characterized by decreased reaction time (RT) and intra-brain neural responses, followed by a quadratic trend (i.e., first increasing and then decreasing) upon insertion of an interference sequence. More importantly, Brain-to-Brain Coupling (BtBC) in the theta band also showed learning and modulation-related trends, with its slope negatively and positively correlating with the slopes of RT and intra-brain functional connectivity, respectively. These results highlight the dynamic nature of self-other integration in joint statistical learning, with statistical regularities implicitly and spontaneously modulating this process. Notably, the BtBC serves as a key neural correlate underlying the dynamics of self-other integration.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Jun Wang
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China.
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, People's Republic of China.
| |
Collapse
|
3
|
Marciano D, Bellier L, Mayer I, Ruvalcaba M, Lee S, Hsu M, Knight RT. Dynamic expectations: Behavioral and electrophysiological evidence of sub-second updates in reward predictions. Commun Biol 2023; 6:871. [PMID: 37620589 PMCID: PMC10449862 DOI: 10.1038/s42003-023-05199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Expectations are often dynamic: sports fans know that expectations are rapidly updated as games unfold. Yet expectations have traditionally been studied as static. Here we present behavioral and electrophysiological evidence of sub-second changes in expectations using slot machines as a case study. In Study 1, we demonstrate that EEG signal before the slot machine stops varies based on proximity to winning. Study 2 introduces a behavioral paradigm to measure dynamic expectations via betting, and shows that expectation trajectories vary as a function of winning proximity. Notably, these expectation trajectories parallel Study 1's EEG activity. Studies 3 (EEG) and 4 (behavioral) replicate these findings in the loss domain. These four studies provide compelling evidence that dynamic sub-second updates in expectations can be behaviorally and electrophysiologically measured. Our research opens promising avenues for understanding the dynamic nature of reward expectations and their impact on cognitive processes.
Collapse
Affiliation(s)
- Déborah Marciano
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Haas Business School, University of California, Berkeley, Berkeley, CA, USA.
| | - Ludovic Bellier
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ida Mayer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Haas Business School, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Ruvalcaba
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sangil Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ming Hsu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Haas Business School, University of California, Berkeley, Berkeley, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Veyrié A, Noreña A, Sarrazin JC, Pezard L. Information-Theoretic Approaches in EEG Correlates of Auditory Perceptual Awareness under Informational Masking. BIOLOGY 2023; 12:967. [PMID: 37508397 PMCID: PMC10376775 DOI: 10.3390/biology12070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
In informational masking paradigms, the successful segregation between the target and masker creates auditory perceptual awareness. The dynamics of the build-up of auditory perception is based on a set of interactions between bottom-up and top-down processes that generate neuronal modifications within the brain network activity. These neural changes are studied here using event-related potentials (ERPs), entropy, and integrated information, leading to several measures applied to electroencephalogram signals. The main findings show that the auditory perceptual awareness stimulated functional activation in the fronto-temporo-parietal brain network through (i) negative temporal and positive centro-parietal ERP components; (ii) an enhanced processing of multi-information in the temporal cortex; and (iii) an increase in informational content in the fronto-central cortex. These different results provide information-based experimental evidence about the functional activation of the fronto-temporo-parietal brain network during auditory perceptual awareness.
Collapse
Affiliation(s)
- Alexandre Veyrié
- Centre National de la Recherche Scientifique (UMR 7291), Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, 13331 Marseille, France
- ONERA, The French Aerospace Lab, 13300 Salon de Provence, France
| | - Arnaud Noreña
- Centre National de la Recherche Scientifique (UMR 7291), Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, 13331 Marseille, France
| | | | - Laurent Pezard
- Centre National de la Recherche Scientifique (UMR 7291), Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, 13331 Marseille, France
| |
Collapse
|
5
|
Marciano D, Bellier L, Mayer I, Ruvalcaba M, Lee S, Hsu M, Knight RT. Dynamic expectations: Behavioral and electrophysiological evidence of sub-second updates in reward predictions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537382. [PMID: 37131777 PMCID: PMC10153130 DOI: 10.1101/2023.04.18.537382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Expectations are often dynamic: any sports fan knows that expectations are rapidly updated as games unfold. Yet expectations have traditionally been studied as static. Here, using slot machines as a case study, we provide parallel behavioral and electrophysiological evidence of sub-second moment-to-moment changes in expectations. In Study 1, we show that the dynamics of the EEG signal before the slot machine stopped differed depending on the nature of the outcome, including not only whether the participant won or lost, but also how close they came to winning. In line with our predictions, Near Win Before outcomes (the slot machine stops one item before a match) were similar to Wins, but different than Near Win After (the machine stops one item after a match) and Full Miss (the machine stops two or three items from a match). In Study 2, we designed a novel behavioral paradigm to measure moment-to-moment changes in expectations via dynamic betting. We found that different outcomes also elicited unique expectation trajectories in the deceleration phase. Notably, these behavioral expectation trajectories paralleled Study 1's EEG activity in the last second prior to the machine's stop. In Studies 3 (EEG) and 4 (behavior) we replicated these findings in the loss domain where a match entails a loss. Again, we found a significant correlation between behavioral and EEG results. These four studies provide the first evidence that dynamic sub-second updates in expectations can be behaviorally and electrophysiologically measured. Our findings open up new avenues for studying the ongoing dynamics of reward expectations and their role in healthy and unhealthy cognition.
Collapse
Affiliation(s)
- Déborah Marciano
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Haas Business School, University of California, Berkeley
| | - Ludovic Bellier
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Ida Mayer
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Haas Business School, University of California, Berkeley
| | - Michael Ruvalcaba
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Sangil Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Ming Hsu
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Haas Business School, University of California, Berkeley
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Department of Psychology, University of California, Berkeley
| |
Collapse
|
6
|
Almeida VN, Radanovic M. Semantic priming and neurobiology in schizophrenia: A theoretical review. Neuropsychologia 2021; 163:108058. [PMID: 34655651 DOI: 10.1016/j.neuropsychologia.2021.108058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
In this theoretical review we bridge the cognitive and neurobiological sciences to shed light on the neurocognitive foundations of the semantic priming effect in schizophrenia. We review and theoretically evaluate the neurotransmitter systems (dopaminergic, GABAergic and glutamatergic) and neurobiological underpinnings of behavioural and electrophysiological (N400) semantic priming in the pathology, and the main hypotheses on their geneses: a disinhibition of the semantic spread of activation, a disorganised semantic storage or noisy lexical-semantic associations, a psychomotor artefact, an artefact of relatedness proportions, or an inability to mobilise contextual information. We further assess the literature on the endophenotype of Formal Thought Disorder from multiple standpoints, ranging from neurophysiology to cognition: considerations are weaved on neuronal (PV basket cell, SST, VIP) and receptor deficits (DRD1, NMDA), neurotransmitter imbalances (dopamine), cortical and dopaminergic lateralisation, inter alia. In conclusion, we put forth novel postulates on the underlying causes of controlled hypopriming, automatic hyperpriming, N400 reversals (larger amplitudes for close associations), indirect versus direct hyperpriming, and the endophenotype of lexical-semantic disturbances in schizophrenia.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Marcia Radanovic
- Laboratório de Neurociências (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Brazil
| |
Collapse
|