1
|
Essex CA, Overson DK, Merenstein JL, Truong TK, Madden DJ, Bedggood MJ, Morgan C, Murray HC, Holdsworth SJ, Stewart AW, Faull RLM, Hume P, Theadom A, Pedersen M. Mild traumatic brain injury increases cortical iron: evidence from individual susceptibility mapping. Brain Commun 2025; 7:fcaf110. [PMID: 40161218 PMCID: PMC11954555 DOI: 10.1093/braincomms/fcaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Quantitative susceptibility mapping has been applied to map brain iron distribution after mild traumatic brain injury to understand properties of neural tissue which may be related to cellular dyshomeostasis. However, this is a heterogeneous injury associated with microstructural brain changes, and 'traditional' group-wise statistical approaches may lead to a loss of clinically relevant information, as subtle alterations at the individual level can be obscured by averages and confounded by within-group variability. More precise and individualized approaches are needed to characterize mild traumatic brain injury better and elucidate potential cellular mechanisms to improve intervention and rehabilitation. To address this issue, we use quantitative MRI to build individualized profiles of regional positive (iron-related) magnetic susceptibility across 34 bilateral cortical ROIs following mild traumatic brain injury. Healthy population templates were constructed for each cortical area using standardized Z-scores derived from 25 age-matched male controls aged between 16 and 32 years (M = 21.10, SD = 4.35), serving as a reference against which Z-scores of 35 males with acute (<14 days) sports-related mild traumatic brain injury were compared [M = 21.60 years (range: 16-33), SD = 4.98]. Secondary analyses sensitive to cortical depth and curvature were also generated to approximate the location of iron accumulation in the cortical laminae and the effect of gyrification. Primary analyses indicated that approximately one-third (11/35; 31%) of injured participants exhibited elevated positive susceptibility indicative of abnormal iron profiles relative to the healthy population, a finding that was mainly concentrated in regions within the temporal lobe. Injury severity was significantly higher (P = 0.02) for these participants than their iron-normal counterparts, suggesting a link between injury severity, symptom burden, and elevated cortical iron. Secondary exploratory analyses of cortical depth and curvature profiles revealed abnormal iron accumulation in 83% (29/35) of mild traumatic brain injury participants, enabling better localization of injury-related changes in iron content to specific loci within each region and identifying effects that may be more subtle and lost in region-wise averaging. Our findings suggest that individualized approaches can further elucidate the clinical relevance of iron in mild head injury. Differences in injury severity between iron-normal and iron-abnormal mild traumatic brain injury participants identified in our primary analysis highlight not only why precise investigation is required to understand the link between objective changes in the brain and subjective symptomatology, but also identify iron as a candidate biomarker for tissue pathology after mild traumatic brain injury.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, Auckland 1023, New Zealand
- School of Psychology, The University of Auckland, Auckland 1142, New Zealand
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Helen C Murray
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Queensland 4067, Australia
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Patria Hume
- School of Sport and Recreation, Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland 0627, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| |
Collapse
|
2
|
Caeyenberghs K, Singh M, Cobden AL, Ellis EG, Graeme LG, Gates P, Burmester A, Guarnera J, Burnett J, Deutscher EM, Firman-Sadler L, Joyce B, Notarianni JP, Pardo de Figueroa Flores C, Domínguez D JF. Magnetic resonance imaging in traumatic brain injury: a survey of clinical practitioners' experiences and views on current practice and obstacles. Brain Inj 2025; 39:427-443. [PMID: 39876834 DOI: 10.1080/02699052.2024.2443001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/20/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) has revolutionized our capacity to examine brain alterations in traumatic brain injury (TBI). However, little is known about the level of implementation of MRI techniques in clinical practice in TBI and associated obstacles. METHODS A diverse set of health professionals completed 19 multiple choice and free text survey questions. RESULTS Of the 81 respondents, 73.4% reported that they acquire/order MRI scans in TBI patients, and 66% indicated they would prefer MRI be more often used with this cohort. The greatest impediment for MRI usage was scanner availability (57.1%). Less than half of respondents (42.1%) indicated that they perform advanced MRI analysis. Factors such as dedicated experts within the team (44.4%) and user-friendly MRI analysis tools (40.7%), were listed as potentially helpful to implement advanced MRI analyses in clinical practice. CONCLUSION Results suggest a wide variability in the purpose, timing, and composition of the scanning protocol of clinical MRI after TBI. Three recommendations are described to broaden implementation of MRI in clinical practice in TBI: 1) development of a standardized multimodal MRI protocol; 2) future directions for the use of advanced MRI analyses; 3) use of low-field MRI to overcome technical/practical issues with high-field MRI.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mervyn Singh
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Annalee L Cobden
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Elizabeth G Ellis
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Liam G Graeme
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Priscilla Gates
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jade Guarnera
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jake Burnett
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Emergency Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Evelyn M Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Lyndon Firman-Sadler
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Bec Joyce
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | | | | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
3
|
Attyé A, Renard F, Anglade V, Krainik A, Kahane P, Mansencal B, Coupé P, Calamante F. Data-driven normative values based on generative manifold learning for quantitative MRI. Sci Rep 2024; 14:7563. [PMID: 38555415 PMCID: PMC10981723 DOI: 10.1038/s41598-024-58141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
In medicine, abnormalities in quantitative metrics such as the volume reduction of one brain region of an individual versus a control group are often provided as deviations from so-called normal values. These normative reference values are traditionally calculated based on the quantitative values from a control group, which can be adjusted for relevant clinical co-variables, such as age or sex. However, these average normative values do not take into account the globality of the available quantitative information. For example, quantitative analysis of T1-weighted magnetic resonance images based on anatomical structure segmentation frequently includes over 100 cerebral structures in the quantitative reports, and these tend to be analyzed separately. In this study, we propose a global approach to personalized normative values for each brain structure using an unsupervised Artificial Intelligence technique known as generative manifold learning. We test the potential benefit of these personalized normative values in comparison with the more traditional average normative values on a population of patients with drug-resistant epilepsy operated for focal cortical dysplasia, as well as on a supplementary healthy group and on patients with Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Vanina Anglade
- Department of Neuroradiology and MRI, SFR RMN Neurosciences, University Grenoble Alpes Hospital, Grenoble, France
| | - Alexandre Krainik
- Department of Neuroradiology and MRI, SFR RMN Neurosciences, University Grenoble Alpes Hospital, Grenoble, France
| | - Philippe Kahane
- Department of Neurology, University Grenoble Alpes Hospital, Grenoble, France
| | - Boris Mansencal
- CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, 33400, Talence, France
| | - Pierrick Coupé
- CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, 33400, Talence, France
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Imaging-The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Caeyenberghs K, Imms P, Irimia A, Monti MM, Esopenko C, de Souza NL, Dominguez D JF, Newsome MR, Dobryakova E, Cwiek A, Mullin HAC, Kim NJ, Mayer AR, Adamson MM, Bickart K, Breedlove KM, Dennis EL, Disner SG, Haswell C, Hodges CB, Hoskinson KR, Johnson PK, Königs M, Li LM, Liebel SW, Livny A, Morey RA, Muir AM, Olsen A, Razi A, Su M, Tate DF, Velez C, Wilde EA, Zielinski BA, Thompson PM, Hillary FG. ENIGMA's simple seven: Recommendations to enhance the reproducibility of resting-state fMRI in traumatic brain injury. Neuroimage Clin 2024; 42:103585. [PMID: 38531165 PMCID: PMC10982609 DOI: 10.1016/j.nicl.2024.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024]
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Martin M Monti
- Department of Psychology, UCLA, USA; Brain Injury Research Center (BIRC), Department of Neurosurgery, UCLA, USA.
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Nicola L de Souza
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Juan F Dominguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Mary R Newsome
- Michael E. DeBakey VA Medical Center, Houston, TX, USA; H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA; Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Andrew Cwiek
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Hollie A C Mullin
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Nicholas J Kim
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM, USA; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Maheen M Adamson
- Women's Operational Military Exposure Network (WOMEN) & Rehabilitation Department, VA Palo Alto, Palo Alto, CA, USA; Rehabilitation Service, VA Palo Alto, Palo Alto, CA, USA; Neurosurgery, Stanford School of Medicine, Stanford, CA, USA.
| | - Kevin Bickart
- UCLA Steve Tisch BrainSPORT Program, USA; Department of Neurology, David Geffen School of Medicine at UCLA, USA.
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Courtney Haswell
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, OH, USA.
| | - Paula K Johnson
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; Neuroscience Center, Brigham Young University, Provo, UT, USA.
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, The Netherlands; Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| | - Lucia M Li
- C3NL, Imperial College London, United Kingdom; UK DRI Centre for Health Care and Technology, Imperial College London, United Kingdom.
| | - Spencer W Liebel
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA.
| | - Alexandra M Muir
- Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; NorHEAD - Norwegian Centre for Headache Research, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| | - Matthew Su
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Carmen Velez
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Elisabeth A Wilde
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Brandon A Zielinski
- Departments of Pediatrics, Neurology, and Neuroscience, University of Florida, Gainesville, FL, USA; Departments of Pediatrics, Neurology, and Radiology, University of Utah, Salt Lake City, UT, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA.
| | - Frank G Hillary
- Department of Psychology, Penn State University, State College, PA, USA; Department of Neurology, Hershey Medical Center, PA, USA.
| |
Collapse
|
5
|
Domínguez D JF, Stewart A, Burmester A, Akhlaghi H, O'Brien K, Bollmann S, Caeyenberghs K. Improving quantitative susceptibility mapping for the identification of traumatic brain injury neurodegeneration at the individual level. Z Med Phys 2024:S0939-3889(24)00001-1. [PMID: 38336583 DOI: 10.1016/j.zemedi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Emerging evidence suggests that traumatic brain injury (TBI) is a major risk factor for developing neurodegenerative disease later in life. Quantitative susceptibility mapping (QSM) has been used by an increasing number of studies in investigations of pathophysiological changes in TBI. However, generating artefact-free quantitative susceptibility maps in brains with large focal lesions, as in the case of moderate-to-severe TBI (ms-TBI), is particularly challenging. To address this issue, we utilized a novel two-pass masking technique and reconstruction procedure (two-pass QSM) to generate quantitative susceptibility maps (QSMxT; Stewart et al., 2022, Magn Reson Med.) in combination with the recently developed virtual brain grafting (VBG) procedure for brain repair (Radwan et al., 2021, NeuroImage) to improve automated delineation of brain areas. We used QSMxT and VBG to generate personalised QSM profiles of individual patients with reference to a sample of healthy controls. METHODS Chronic ms-TBI patients (N = 8) and healthy controls (N = 12) underwent (multi-echo) GRE, and anatomical MRI (MPRAGE) on a 3T Siemens PRISMA scanner. We reconstructed the magnetic susceptibility maps using two-pass QSM from QSMxT. We then extracted values of magnetic susceptibility in grey matter (GM) regions (following brain repair via VBG) across the whole brain and determined if they deviate from a reference healthy control group [Z-score < -3.43 or > 3.43, relative to the control mean], with the aim of obtaining personalised QSM profiles. RESULTS Using two-pass QSM, we achieved susceptibility maps with a substantial increase in quality and reduction in artefacts irrespective of the presence of large focal lesions, compared to single-pass QSM. In addition, VBG minimised the loss of GM regions and exclusion of patients due to failures in the region delineation step. Our findings revealed deviations in magnetic susceptibility measures from the HC group that differed across individual TBI patients. These changes included both increases and decreases in magnetic susceptibility values in multiple GM regions across the brain. CONCLUSIONS We illustrate how to obtain magnetic susceptibility values at the individual level and to build personalised QSM profiles in ms-TBI patients. Our approach opens the door for QSM investigations in more severely injured patients. Such profiles are also critical to overcome the inherent heterogeneity of clinical populations, such as ms-TBI, and to characterize the underlying mechanisms of neurodegeneration at the individual level more precisely. Moreover, this new personalised QSM profiling could in the future assist clinicians in assessing recovery and formulating a neuroscience-guided integrative rehabilitation program tailored to individual TBI patients.
Collapse
Affiliation(s)
- Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Ashley Stewart
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Hamed Akhlaghi
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Emergency Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Clemente A, Attyé A, Renard F, Calamante F, Burmester A, Imms P, Deutscher E, Akhlaghi H, Beech P, Wilson PH, Poudel G, Domínguez D JF, Caeyenberghs K. Individualised profiling of white matter organisation in moderate-to-severe traumatic brain injury patients. Brain Res 2023; 1806:148289. [PMID: 36813064 DOI: 10.1016/j.brainres.2023.148289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND PURPOSE Approximately 65% of moderate-to-severe traumatic brain injury (m-sTBI) patients present with poor long-term behavioural outcomes, which can significantly impair activities of daily living. Numerous diffusion-weighted MRI studies have linked these poor outcomes to decreased white matter integrity of several commissural tracts, association fibres and projection fibres in the brain. However, most studies have focused on group-based analyses, which are unable to deal with the substantial between-patient heterogeneity in m-sTBI. As a result, there is increasing interest and need in conducting individualised neuroimaging analyses. MATERIALS AND METHODS Here, we generated a detailed subject-specific characterisation of microstructural organisation of white matter tracts in 5 chronic patients with m-sTBI (29 - 49y, 2 females), presented as a proof-of-concept. We developed an imaging analysis framework using fixel-based analysis and TractLearn to determine whether the values of fibre density of white matter tracts at the individual patient level deviate from the healthy control group (n = 12, 8F, Mage = 35.7y, age range 25 - 64y). RESULTS Our individualised analysis revealed unique white matter profiles, confirming the heterogenous nature of m-sTBI and the need of individualised profiles to properly characterise the extent of injury. Future studies incorporating clinical data, as well as utilising larger reference samples and examining the test-retest reliability of the fixel-wise metrics are warranted. CONCLUSIONS Individualised profiles may assist clinicians in tracking recovery and planning personalised training programs for chronic m-sTBI patients, which is necessary to achieve optimal behavioural outcomes and improved quality of life.
Collapse
Affiliation(s)
- Adam Clemente
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural, Health and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Arnaud Attyé
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France; School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Félix Renard
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Imaging - The University of Sydney, Sydney, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Phoebe Imms
- Leonard Davis School of Gerontology, University of Southern California, Australia
| | - Evelyn Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Hamed Akhlaghi
- Emergency Department, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Department of Psychology, Faculty of Health, Deakin University, Australia
| | - Paul Beech
- Department of Radiology and Nuclear Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Peter H Wilson
- Development and Disability over the Lifespan Program, Healthy Brain and Mind Research Centre, School of Behavioural, Health and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
7
|
Leveraging manifold learning techniques to explore white matter anomalies: An application of the TractLearn pipeline in epilepsy. Neuroimage Clin 2022; 36:103209. [PMID: 36162235 PMCID: PMC9668609 DOI: 10.1016/j.nicl.2022.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
An accurate description of brain white matter anatomy in vivo remains a challenge. However, technical progress allows us to analyze structural variations in an increasingly sophisticated way. Current methods of processing diffusion MRI data now make it possible to correct some limiting biases. In addition, the development of statistical learning algorithms offers the opportunity to analyze the data from a new perspective. We applied newly developed tractography models to extract quantitative white matter parameters in a group of patients with chronic temporal lobe epilepsy. Furthermore, we implemented a statistical learning workflow optimized for the MRI diffusion data - the TractLearn pipeline - to model inter-individual variability and predict structural changes in patients. Finally, we interpreted white matter abnormalities in the context of several other parameters reflecting clinical status, as well as neuronal and cognitive functioning for these patients. Overall, we show the relevance of such a diffusion data processing pipeline for the evaluation of clinical populations. The "global to fine scale" funnel statistical approach proposed in this study also contributes to the understanding of neuroplasticity mechanisms involved in refractory epilepsy, thus enriching previous findings.
Collapse
|
8
|
Osmanlıoğlu Y, Parker D, Alappatt JA, Gugger JJ, Diaz-Arrastia RR, Whyte J, Kim JJ, Verma R. Connectomic assessment of injury burden and longitudinal structural network alterations in moderate-to-severe traumatic brain injury. Hum Brain Mapp 2022; 43:3944-3957. [PMID: 35486024 PMCID: PMC9374876 DOI: 10.1002/hbm.25894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem. Caused by external mechanical forces, a major characteristic of TBI is the shearing of axons across the white matter, which causes structural connectivity disruptions between brain regions. This diffuse injury leads to cognitive deficits, frequently requiring rehabilitation. Heterogeneity is another characteristic of TBI as severity and cognitive sequelae of the disease have a wide variation across patients, posing a big challenge for treatment. Thus, measures assessing network-wide structural connectivity disruptions in TBI are necessary to quantify injury burden of individuals, which would help in achieving personalized treatment, patient monitoring, and rehabilitation planning. Despite TBI being a disconnectivity syndrome, connectomic assessment of structural disconnectivity has been relatively limited. In this study, we propose a novel connectomic measure that we call network normality score (NNS) to capture the integrity of structural connectivity in TBI patients by leveraging two major characteristics of the disease: diffuseness of axonal injury and heterogeneity of the disease. Over a longitudinal cohort of moderate-to-severe TBI patients, we demonstrate that structural network topology of patients is more heterogeneous and significantly different than that of healthy controls at 3 months postinjury, where dissimilarity further increases up to 12 months. We also show that NNS captures injury burden as quantified by posttraumatic amnesia and that alterations in the structural brain network is not related to cognitive recovery. Finally, we compare NNS to major graph theory measures used in TBI literature and demonstrate the superiority of NNS in characterizing the disease.
Collapse
Affiliation(s)
- Yusuf Osmanlıoğlu
- Department of Computer Science, College of Computing and Informatics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Drew Parker
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob A Alappatt
- Speech and hearing, bioscience and technology program, Harvard Medical School, Harvard University, Boston, MA, USA
| | - James J Gugger
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon R Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Whyte
- Moss Rehabilitation Research Institute, TBI Rehabilitation Research LaboratoryEinstein Medical Center, Elkins Park, Pennsylvania, USA
| | - Junghoon J Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine, The City College of New York, New York, New York, USA
| | - Ragini Verma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. Neuroimage 2021; 241:118417. [PMID: 34298083 DOI: 10.1016/j.neuroimage.2021.118417] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Collapse
|