1
|
Wischnewski KJ, Jarre F, Eickhoff SB, Popovych OV. Exploring dynamical whole-brain models in high-dimensional parameter spaces. PLoS One 2025; 20:e0322983. [PMID: 40354445 PMCID: PMC12068738 DOI: 10.1371/journal.pone.0322983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
Personalized modeling of the resting-state brain activity implies the usage of dynamical whole-brain models with high-dimensional model parameter spaces. However, the practical benefits and mathematical challenges originating from such approaches have not been thoroughly documented, leaving the question of the value and utility of high-dimensional approaches unanswered. Studying a whole-brain model of coupled phase oscillators, we proceeded from low-dimensional scenarios featuring 2-3 global model parameters only to high-dimensional cases, where we additionally equipped every brain region with a specific local model parameter. To enable the parameter optimizations for the high-dimensional model fitting to empirical data, we applied two dedicated mathematical optimization algorithms (Bayesian Optimization, Covariance Matrix Adaptation Evolution Strategy). We thereby optimized up to 103 parameters simultaneously with the aim to maximize the correlation between simulated and empirical functional connectivity separately for 272 subjects. The obtained model parameters demonstrated increased variability within subjects and reduced reliability across repeated optimization runs in high-dimensional spaces. Nevertheless, the quality of the model validation (goodness-of-fit, GoF) improved considerably and remained very stable and reliable together with the simulated functional connectivity. Applying the modeling results to phenotypical data, we found significantly higher prediction accuracies for sex classification when the GoF or coupling parameter values optimized in the high-dimensional spaces were considered as features. Our results elucidate the model fitting in high-dimensional parameter spaces and can contribute to an improved dynamical brain modeling as well as its application to the frameworks of inter-individual variability and brain-behavior relationships.
Collapse
Affiliation(s)
- Kevin J. Wischnewski
- Institute of Neuroscience and Medicine – Brain and Behaviour (INM-7), Forschungszentrum Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Institute of Mathematics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Florian Jarre
- Institute of Mathematics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine – Brain and Behaviour (INM-7), Forschungszentrum Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Oleksandr V. Popovych
- Institute of Neuroscience and Medicine – Brain and Behaviour (INM-7), Forschungszentrum Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
2
|
Pashkov A, Dakhtin I. Direct Comparison of EEG Resting State and Task Functional Connectivity Patterns for Predicting Working Memory Performance Using Connectome-Based Predictive Modeling. Brain Connect 2025; 15:175-187. [PMID: 40317131 DOI: 10.1089/brain.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Background: The integration of machine learning with advanced neuroimaging has emerged as a powerful approach for uncovering the relationship between neuronal activity patterns and behavioral traits. While resting-state neuroimaging has significantly contributed to understanding the neural basis of cognition, recent fMRI studies suggest that task-based paradigms may offer superior predictive power for cognitive outcomes. However, this hypothesis has never been tested using electroencephalography (EEG) data. Methods: We conducted the first experimental comparison of predictive models built on high-density EEG data recorded during both resting-state and an auditory working memory task. Multiple data processing pipelines were employed to ensure robustness and reliability. Model performance was evaluated by computing the Pearson correlation coefficient between predicted and observed behavioral scores, supplemented by mean absolute error and root mean square error metrics for each model configuration. Results: Consistent with prior fMRI findings, task-based EEG data yielded slightly better modeling performance than resting-state data. Both conditions demonstrated high predictive accuracy, with peak correlations between observed and predicted values reaching r = 0.5. Alpha and beta band functional connectivity were the strongest predictors of working memory performance, followed by theta and gamma bands. Additionally, the choice of parcellation atlas and connectivity method significantly influenced results, highlighting the importance of methodological considerations. Conclusion: Our findings support the advantage of task-based EEG over resting-state data in predicting cognitive performance, aligning with. The study underscores the critical role of frequency-specific functional connectivity and methodological choices in model performance. These insights should guide future experimental designs in cognitive neuroscience. Impact Statement This study provides the first direct comparison of EEG-based functional connectivity during rest and task conditions for predicting working memory performance using connectome-based predictive modeling (CPM). It demonstrates that task-based EEG data slightly outperforms resting-state data, with alpha and beta bands being the most predictive. The findings highlight the critical influence of methodological choices, such as parcellation atlases and connectivity metrics, on model outcomes. By bridging gaps in EEG research and validating CPM's applicability, this work advances the optimization of neuroimaging protocols for cognitive assessment, offering insights for future studies in cognitive neuroscience.
Collapse
Affiliation(s)
- Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Ivan Dakhtin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
- Department of Fundamental Medicine, Chelyabinsk State University, Chelyabinsk, Russia
| |
Collapse
|
3
|
Masharipov R, Knyazeva I, Korotkov A, Cherednichenko D, Kireev M. Comparison of whole-brain task-modulated functional connectivity methods for fMRI task connectomics. Commun Biol 2024; 7:1402. [PMID: 39462101 PMCID: PMC11513045 DOI: 10.1038/s42003-024-07088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Higher brain functions require flexible integration of information across widely distributed brain regions depending on the task context. Resting-state functional magnetic resonance imaging (fMRI) has provided substantial insight into large-scale intrinsic brain network organisation, yet the principles of rapid context-dependent reconfiguration of that intrinsic network organisation are much less understood. A major challenge for task connectome mapping is the absence of a gold standard for deriving whole-brain task-modulated functional connectivity matrices. Here, we perform biophysically realistic simulations to control the ground-truth task-modulated functional connectivity over a wide range of experimental settings. We reveal the best-performing methods for different types of task designs and their fundamental limitations. Importantly, we demonstrate that rapid (100 ms) modulations of oscillatory neuronal synchronisation can be recovered from sluggish haemodynamic fluctuations even at typically low fMRI temporal resolution (2 s). Finally, we provide practical recommendations on task design and statistical analysis to foster task connectome mapping.
Collapse
Affiliation(s)
- Ruslan Masharipov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Irina Knyazeva
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander Korotkov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Denis Cherednichenko
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maxim Kireev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Masharipov R, Knyazeva I, Korotkov A, Cherednichenko D, Kireev M. Comparison of whole-brain task-modulated functional connectivity methods for fMRI task connectomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576622. [PMID: 39464064 PMCID: PMC11507666 DOI: 10.1101/2024.01.22.576622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Higher brain functions require flexible integration of information across widely distributed brain regions depending on the task context. Resting-state functional magnetic resonance imaging (fMRI) has provided substantial insight into large-scale intrinsic brain network organisation, yet the principles of rapid context-dependent reconfiguration of that intrinsic network organisation are much less understood. A major challenge for task connectome mapping is the absence of a gold standard for deriving whole-brain task-modulated functional connectivity matrices. Here, we perform biophysically realistic simulations to control the ground-truth task-modulated functional connectivity over a wide range of experimental settings. We reveal the best-performing methods for different types of task designs and their fundamental limitations. Importantly, we demonstrate that rapid (100 ms) modulations of oscillatory neuronal synchronisation can be recovered from sluggish haemodynamic fluctuations even at typically low fMRI temporal resolution (2 s). Finally, we provide practical recommendations on task design and statistical analysis to foster task connectome mapping.
Collapse
Affiliation(s)
- Ruslan Masharipov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Knyazeva
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander Korotkov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Denis Cherednichenko
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maxim Kireev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Saberi A, Wischnewski KJ, Jung K, Lotter LD, Schaare HL, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Poustka L, Hohmann S, Holz N, Baeuchl C, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Paus T, Dukart J, Bernhardt BC, Popovych OV, Eickhoff SB, Valk SL. Adolescent maturation of cortical excitation-inhibition balance based on individualized biophysical network modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599509. [PMID: 38948771 PMCID: PMC11213014 DOI: 10.1101/2024.06.18.599509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level.
Collapse
Affiliation(s)
- Amin Saberi
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kevin J Wischnewski
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Mathematics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leon D Lotter
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany
| | - H Lina Schaare
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Mental Health (DZPG), site Berlin-Potsdam, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Christian Baeuchl
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Juergen Dukart
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Oleksandr V Popovych
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
6
|
Luppi AI, Gellersen HM, Liu ZQ, Peattie ARD, Manktelow AE, Adapa R, Owen AM, Naci L, Menon DK, Dimitriadis SI, Stamatakis EA. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics. Nat Commun 2024; 15:4745. [PMID: 38834553 PMCID: PMC11150439 DOI: 10.1038/s41467-024-48781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander R D Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Department of Psychology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Integrative Neuroimaging Lab, Thessaloniki, Greece
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Courson J, Quoy M, Timofeeva Y, Manos T. An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control. Front Comput Neurosci 2024; 18:1360009. [PMID: 38468870 PMCID: PMC10925689 DOI: 10.3389/fncom.2024.1360009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain area and may or may not remain localized), with a specific focus on the hippocampal region known for its association with epileptic seizures. We then devise computational strategies to confine seizures (prevent widespread propagation), simulating medical-like treatments such as tissue resection and the application of an anti-seizure drugs or neurostimulation to suppress hyperexcitability. Through selectively removing (blocking) specific connections informed by the structural connectome and graph network measurements or by locally reducing outgoing connection weights of EZ areas, we demonstrate that seizures can be kept constrained around the EZ region. We successfully identified the minimal connections necessary to prevent widespread seizures, with a particular focus on minimizing surgical or medical intervention while simultaneously preserving the original structural connectivity and maximizing brain functionality.
Collapse
Affiliation(s)
- Juliette Courson
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, Cergy-Pontoise, France
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Mathias Quoy
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- IPAL CNRS Singapore, Singapore, Singapore
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thanos Manos
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
| |
Collapse
|
8
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Zhao B, Li T, Li Y, Fan Z, Xiong D, Wang X, Gao M, Smith SM, Zhu H. An atlas of trait associations with resting-state and task-evoked human brain functional organizations in the UK Biobank. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-23. [PMID: 38770197 PMCID: PMC11105703 DOI: 10.1162/imag_a_00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to identify brain regions linked to critical functions, such as language and vision, and to detect tumors, strokes, brain injuries, and diseases. It is now known that large sample sizes are necessary for fMRI studies to detect small effect sizes and produce reproducible results. Here we report a systematic association analysis of 647 traits with imaging features extracted from resting-state and task-evoked fMRI data of more than 40,000 UK Biobank participants. We used a parcellation-based approach to generate 64,620 functional connectivity measures to reveal fine-grained details about cerebral cortex functional organizations. The difference between functional organizations at rest and during task was examined, and we have prioritized important brain regions and networks associated with a variety of human traits and clinical outcomes. For example, depression was most strongly associated with decreased connectivity in the somatomotor network. We have made our results publicly available and developed a browser framework to facilitate the exploration of brain function-trait association results (http://fmriatlas.org/).
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- These authors contributed equally to this work
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mufeng Gao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen M. Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Wang Q, Zhao S, Liu T, Han J, Liu C. Temporal fingerprints of cortical gyrification in marmosets and humans. Cereb Cortex 2023; 33:9802-9814. [PMID: 37434368 PMCID: PMC10656951 DOI: 10.1093/cercor/bhad245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/13/2023] Open
Abstract
Recent neuroimaging studies in humans have reported distinct temporal dynamics of gyri and sulci, which may be associated with putative functions of cortical gyrification. However, the complex folding patterns of the human cortex make it difficult to explain temporal patterns of gyrification. In this study, we used the common marmoset as a simplified model to examine the temporal characteristics and compare them with the complex gyrification of humans. Using a brain-inspired deep neural network, we obtained reliable temporal-frequency fingerprints of gyri and sulci from the awake rs-fMRI data of marmosets and humans. Notably, the temporal fingerprints of one region successfully classified the gyrus/sulcus of another region in both marmosets and humans. Additionally, the temporal-frequency fingerprints were remarkably similar in both species. We then analyzed the resulting fingerprints in several domains and adopted the Wavelet Transform Coherence approach to characterize the gyro-sulcal coupling patterns. In both humans and marmosets, sulci exhibited higher frequency bands than gyri, and the two were temporally coupled within the same range of phase angles. This study supports the notion that gyri and sulci possess unique and evolutionarily conserved features that are consistent across functional areas, and advances our understanding of the functional role of cortical gyrification.
Collapse
Affiliation(s)
- Qiyu Wang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, United States
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Cirong Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
12
|
Jung K, Florin E, Patil KR, Caspers J, Rubbert C, Eickhoff SB, Popovych OV. Whole-brain dynamical modelling for classification of Parkinson's disease. Brain Commun 2022; 5:fcac331. [PMID: 36601625 PMCID: PMC9798283 DOI: 10.1093/braincomms/fcac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and modelling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated whole-brain connectome-derived features can be utilized to classify patients with Parkinson's disease against healthy controls in light of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented a model validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demonstrated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results, where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-individual research and its clinical application.
Collapse
Affiliation(s)
- Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, 40225 Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, 40225 Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Oleksandr V Popovych
- Correspondence to: Oleksandr V. Popovych Institute of Neuroscience and Medicine Brain and Behaviour (INM-7) Research Centre Jülich, 52425 Jülich, Germany E-mail:
| |
Collapse
|
13
|
Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G. Pattern of frustration formation in the functional brain network. Netw Neurosci 2022; 6:1334-1356. [PMID: 38800463 PMCID: PMC11117102 DOI: 10.1162/netn_a_00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/05/2022] [Indexed: 05/29/2024] Open
Abstract
The brain is a frustrated system that contains conflictual link arrangements named frustration. The frustration as a source of disorder prevents the system from settling into low-energy states and provides flexibility for brain network organization. In this research, we tried to identify the pattern of frustration formation in the brain at the levels of region, connection, canonical network, and hemisphere. We found that frustration formation has no uniform pattern. Some subcortical elements have an active role in frustration formation, despite low contributions from many cortical elements. Frustrating connections are mostly between-network connections, and triadic frustrations are mainly formed between three regions from three distinct canonical networks. We did not find any significant differences between brain hemispheres or any robust differences between the frustration formation patterns of various life-span stages. Our results may be interesting for those who study the organization of brain links and promising for those who want to manipulate brain networks.
Collapse
Affiliation(s)
- Majid Saberi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Gholamreza Jafari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran
- Physics Department, Shahid Beheshti University, Tehran, Iran
- Institute of Information Technology and Data Science, Irkutsk National Research Technical University, Irkutsk, Russia
| |
Collapse
|
14
|
Reliability and subject specificity of personalized whole-brain dynamical models. Neuroimage 2022; 257:119321. [PMID: 35580807 DOI: 10.1016/j.neuroimage.2022.119321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
Collapse
|
15
|
Quantifiable brain atrophy synthesis for benchmarking of cortical thickness estimation methods. Med Image Anal 2022; 82:102576. [DOI: 10.1016/j.media.2022.102576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/10/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022]
|
16
|
A ketogenic intervention improves dorsal attention network functional and structural connectivity in mild cognitive impairment. Neurobiol Aging 2022; 115:77-87. [DOI: 10.1016/j.neurobiolaging.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
|
17
|
Wischnewski KJ, Eickhoff SB, Jirsa VK, Popovych OV. Towards an efficient validation of dynamical whole-brain models. Sci Rep 2022; 12:4331. [PMID: 35288595 PMCID: PMC8921267 DOI: 10.1038/s41598-022-07860-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model’s capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical structural connectivity of 105 healthy subjects. We determine optimal model parameters from two- and three-dimensional parameter spaces and show that the overall fitting quality of the tested methods can compete with the GS. There are, however, marked differences in the required computational resources and stability properties, which we also investigate before proposing CMAES and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these methods generated similar results as the GS, but within less than 6% of the computation time. Our results contribute to an efficient validation of models for personalized simulations of brain dynamics.
Collapse
|
18
|
Ahrends C, Stevner A, Pervaiz U, Kringelbach ML, Vuust P, Woolrich MW, Vidaurre D. Data and model considerations for estimating time-varying functional connectivity in fMRI. Neuroimage 2022; 252:119026. [PMID: 35217207 PMCID: PMC9361391 DOI: 10.1016/j.neuroimage.2022.119026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Time-varying FC models sometimes fail to detect temporal changes in fMRI data. Between-subject and within-session FC variability affect model stasis. The choice of parcellation affects model stasis in real fMRI data. The number of observations and free parameters per state critically affect model stasis.
Functional connectivity (FC) in the brain has been shown to exhibit subtle but reliable modulations within a session. One way of estimating time-varying FC is by using state-based models that describe fMRI time series as temporal sequences of states, each with an associated, characteristic pattern of FC. However, the estimation of these models from data sometimes fails to capture changes in a meaningful way, such that the model estimation assigns entire sessions (or the largest part of them) to a single state, therefore failing to capture within-session state modulations effectively; we refer to this phenomenon as the model becoming static, or model stasis. Here, we aim to quantify how the nature of the data and the choice of model parameters affect the model's ability to detect temporal changes in FC using both simulated fMRI time courses and resting state fMRI data. We show that large between-subject FC differences can overwhelm subtler within-session modulations, causing the model to become static. Further, the choice of parcellation can also affect the model's ability to detect temporal changes. We finally show that the model often becomes static when the number of free parameters per state that need to be estimated is high and the number of observations available for this estimation is low in comparison. Based on these findings, we derive a set of practical recommendations for time-varying FC studies, in terms of preprocessing, parcellation and complexity of the model.
Collapse
Affiliation(s)
- C Ahrends
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C 8000, Denmark.
| | - A Stevner
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
| | - U Pervaiz
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - M L Kringelbach
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C 8000, Denmark; Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Headington, Oxford OX3 7JX, United Kingdom
| | - P Vuust
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C 8000, Denmark
| | - M W Woolrich
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Warneford Ln, Headington, Oxford OX3 7JX, United Kingdom
| | - D Vidaurre
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Warneford Ln, Headington, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
19
|
Gonzalez Alam TRDJ, Mckeown BLA, Gao Z, Bernhardt B, Vos de Wael R, Margulies DS, Smallwood J, Jefferies E. A tale of two gradients: differences between the left and right hemispheres predict semantic cognition. Brain Struct Funct 2021; 227:631-654. [PMID: 34510282 PMCID: PMC8844158 DOI: 10.1007/s00429-021-02374-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Decomposition of whole-brain functional connectivity patterns reveals a principal gradient that captures the separation of sensorimotor cortex from heteromodal regions in the default mode network (DMN). Functional homotopy is strongest in sensorimotor areas, and weakest in heteromodal cortices, suggesting there may be differences between the left and right hemispheres (LH/RH) in the principal gradient, especially towards its apex. This study characterised hemispheric differences in the position of large-scale cortical networks along the principal gradient, and their functional significance. We collected resting-state fMRI and semantic, working memory and non-verbal reasoning performance in 175 + healthy volunteers. We then extracted the principal gradient of connectivity for each participant, tested which networks showed significant hemispheric differences on the gradient, and regressed participants’ behavioural efficiency in tasks outside the scanner against interhemispheric gradient differences for each network. LH showed a higher overall principal gradient value, consistent with its role in heteromodal semantic cognition. One frontotemporal control subnetwork was linked to individual differences in semantic cognition: when it was nearer heteromodal DMN on the principal gradient in LH, participants showed more efficient semantic retrieval—and this network also showed a strong hemispheric difference in response to semantic demands but not working memory load in a separate study. In contrast, when a dorsal attention subnetwork was closer to the heteromodal end of the principal gradient in RH, participants showed better visual reasoning. Lateralization of function may reflect differences in connectivity between control and heteromodal regions in LH, and attention and visual regions in RH.
Collapse
Affiliation(s)
| | | | - Zhiyao Gao
- Department of Psychology, University of York, York, UK
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) and Université de Paris, INCC UMR 8002, Paris, France
| | | | | |
Collapse
|