1
|
Boonstra JT. The cerebellar connectome. Behav Brain Res 2025; 482:115457. [PMID: 39884319 DOI: 10.1016/j.bbr.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The cerebellum, once primarily associated with motor functions, has emerged as a critical component in higher cognitive processes and emotional regulation. This paradigm shift frames the cerebellum as an essential focal point for elucidating sophisticated functional brain circuitry. Network neuroscience often maintains a cortical-centric viewpoint, potentially overlooking the significant contributions of the cerebellum in connectome organization. Enhanced recognition and integration of cerebellar aspects in connectomic analyses hold significant potential for elucidating cerebellar circuitry within comprehensive brain networks and in neuropsychiatric conditions where cerebellar involvement is evident. This review explores the intricate anatomy, connectivity, and functional organization of the cerebellum within the broader context of large-scale brain networks. Cerebellar-specific networks are examined, emphasizing their role in supporting diverse cognitive functions via the cerebellum's hierarchical functional organization. The clinical significance of cerebellar connectomics is then addressed, highlighting the interplay between cerebellar circuitry and neurological and psychiatric conditions. The paper concludes by considering neurostimulation treatments and future directions in the field. This comprehensive review underscores the cerebellum's integral role in the human connectome.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
2
|
Hou M, Hill PF, Aktas ANZ, Ekstrom AD, Rugg MD. Neural Correlates of Retrieval Success and Precision: A Functional Magnetic Resonance Imaging Study. J Cogn Neurosci 2025; 37:680-692. [PMID: 39536157 PMCID: PMC11870802 DOI: 10.1162/jocn_a_02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prior studies examining the neural mechanisms underlying retrieval success and precision have yielded inconsistent results. Here, the neural correlates of success and precision were examined with a memory task that assessed precision for spatial location. A sample of healthy young adults underwent fMRI scanning during a single study-test cycle. At study, participants viewed a series of object images, each placed at a randomly selected location on an imaginary circle. At test, studied images were intermixed with new images and presented to the participants. The requirement was to move a cursor to the location of the studied image, guessing if necessary. Participants then signaled whether the presented image had been studied. Memory precision was quantified as the angular difference between the studied location and the location selected by the participant. A precision effect was evident in the left angular gyrus, where BOLD activity covaried with location accuracy. In addition, multivoxel pattern analysis revealed a significant item-level reinstatement effect in the angular gyrus for high-precision trials. There was no evidence of a retrieval success effect in this region. BOLD activity in the hippocampus was insensitive to both success and precision. These findings are partially consistent with prior evidence that success and precision are dissociable features of memory retrieval.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Paul F. Hill
- Department of Psychology, University of Arizona, USA
| | - Ayse N. Z. Aktas
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Arne D. Ekstrom
- Department of Psychology, University of Arizona, USA
- Evelyn McKnight Brain Institute, University of Arizona, USA
| | - Michael D. Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
3
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. Nat Neurosci 2024; 27:2500-2511. [PMID: 39414973 PMCID: PMC11614745 DOI: 10.1038/s41593-024-01787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
The brainstem is a fundamental component of the central nervous system, yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. In this study, we used high-resolution 7-Tesla functional magnetic resonance imaging to derive a functional connectome encompassing cortex and 58 brainstem nuclei spanning the midbrain, pons and medulla. We identified a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as neurophysiological oscillatory rhythms, patterns of cognitive functional specialization and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicated all findings using 3-Tesla data from the same participants. Collectively, this work demonstrates that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
4
|
Tchetchenian A, Zekelman L, Chen Y, Rushmore J, Zhang F, Yeterian EH, Makris N, Rathi Y, Meijering E, Song Y, O'Donnell LJ. Deep multimodal saliency parcellation of cerebellar pathways: Linking microstructure and individual function through explainable multitask learning. Hum Brain Mapp 2024; 45:e70008. [PMID: 39185598 PMCID: PMC11345609 DOI: 10.1002/hbm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
Parcellation of human cerebellar pathways is essential for advancing our understanding of the human brain. Existing diffusion magnetic resonance imaging tractography parcellation methods have been successful in defining major cerebellar fibre tracts, while relying solely on fibre tract structure. However, each fibre tract may relay information related to multiple cognitive and motor functions of the cerebellum. Hence, it may be beneficial for parcellation to consider the potential importance of the fibre tracts for individual motor and cognitive functional performance measures. In this work, we propose a multimodal data-driven method for cerebellar pathway parcellation, which incorporates both measures of microstructure and connectivity, and measures of individual functional performance. Our method involves first training a multitask deep network to predict various cognitive and motor measures from a set of fibre tract structural features. The importance of each structural feature for predicting each functional measure is then computed, resulting in a set of structure-function saliency values that are clustered to parcellate cerebellar pathways. We refer to our method as Deep Multimodal Saliency Parcellation (DeepMSP), as it computes the saliency of structural measures for predicting cognitive and motor functional performance, with these saliencies being applied to the task of parcellation. Applying DeepMSP to a large-scale dataset from the Human Connectome Project Young Adult study (n = 1065), we found that it was feasible to identify multiple cerebellar pathway parcels with unique structure-function saliency patterns that were stable across training folds. We thoroughly experimented with all stages of the DeepMSP pipeline, including network selection, structure-function saliency representation, clustering algorithm, and cluster count. We found that a 1D convolutional neural network architecture and a transformer network architecture both performed comparably for the multitask prediction of endurance, strength, reading decoding, and vocabulary comprehension, with both architectures outperforming a fully connected network architecture. Quantitative experiments demonstrated that a proposed low-dimensional saliency representation with an explicit measure of motor versus cognitive category bias achieved the best parcellation results, while a parcel count of four was most successful according to standard cluster quality metrics. Our results suggested that motor and cognitive saliencies are distributed across the cerebellar white matter pathways. Inspection of the final k = 4 parcellation revealed that the highest-saliency parcel was most salient for the prediction of both motor and cognitive performance scores and included parts of the middle and superior cerebellar peduncles. Our proposed saliency-based parcellation framework, DeepMSP, enables multimodal, data-driven tractography parcellation. Through utilising both structural features and functional performance measures, this parcellation strategy may have the potential to enhance the study of structure-function relationships of the cerebellar pathways.
Collapse
Affiliation(s)
- Ari Tchetchenian
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Leo Zekelman
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Harvard UniversityCambridgeMassachusettsUSA
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Fan Zhang
- School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | | | - Nikos Makris
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Erik Meijering
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Yang Song
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Lauren J. O'Donnell
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Dabbagh A, Horn U, Kaptan M, Mildner T, Müller R, Lepsien J, Weiskopf N, Brooks JCW, Finsterbusch J, Eippert F. Reliability of task-based fMRI in the dorsal horn of the human spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572825. [PMID: 38187724 PMCID: PMC10769329 DOI: 10.1101/2023.12.22.572825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC). At the group level, we observed robust autonomic responses as well as spatially specific spinal cord BOLD responses at the expected location, but no spatial overlap in BOLD response patterns across days. While autonomic indicators of pain processing showed good-to-excellent reliability, both β-estimates and z-scores of task-related BOLD responses showed poor reliability across days in the target region (gray matter of the ipsilateral dorsal horn). When taking into account the sensitivity of gradient-echo echo planar imaging (GE-EPI) to draining vein signals by including the venous plexus in the analysis, we observed BOLD responses with fair reliability across days. Taken together, these results demonstrate that heat pain stimuli as short as one second are able to evoke a robust and spatially specific BOLD response, which is however strongly variable within participants across time, resulting in low reliability in the dorsal horn gray matter. Further improvements in data acquisition and analysis techniques are thus necessary before event-related spinal cord fMRI as used here can be reliably employed in longitudinal designs or clinical settings.
Collapse
Affiliation(s)
- Alice Dabbagh
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, CA, USA
| | - Toralf Mildner
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roland Müller
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jöran Lepsien
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), Norwich, United Kingdom
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
6
|
Sengupta A, Mishra A, Wang F, Chen LM, Gore JC. Characteristic BOLD signals are detectable in white matter of the spinal cord at rest and after a stimulus. Proc Natl Acad Sci U S A 2024; 121:e2316117121. [PMID: 38776372 PMCID: PMC11145258 DOI: 10.1073/pnas.2316117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024] Open
Abstract
We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.
Collapse
Affiliation(s)
- Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
7
|
Haris EM, Bryant RA, Korgaonkar MS. Structural covariance, topological organization, and volumetric features of amygdala subnuclei in posttraumatic stress disorder. Neuroimage Clin 2024; 42:103619. [PMID: 38744025 PMCID: PMC11108976 DOI: 10.1016/j.nicl.2024.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The amygdala is divided into functional subnuclei which have been challenging to investigate due to functional magnetic resonance imaging (MRI) limitations in mapping small neural structures. Hence their role in the neurobiology of posttraumatic stress disorder (PTSD) remains poorly understood. Examination of covariance of structural MRI measures could be an alternate approach to circumvent this issue. T1-weighted anatomical scans from a 3 T scanner from non-trauma-exposed controls (NEC; n = 71, 75 % female) and PTSD participants (n = 67, 69 % female) were parcellated into 105 brain regions. Pearson's r partial correlations were computed for three and nine bilateral amygdala subnuclei and every other brain region, corrected for age, sex, and total brain volume. Pairwise correlation comparisons were performed to examine subnuclei covariance profiles between-groups. Graph theory was employed to investigate subnuclei network topology. Volumetric measures were compared to investigate structural changes. We found differences between amygdala subnuclei in covariance with the hippocampus for both groups, and additionally with temporal brain regions for the PTSD group. Network topology demonstrated the importance of the right basal nucleus in facilitating network communication only in PTSD. There were no between-group differences for any of the three structural metrics. These findings are in line with previous work that has failed to find structural differences for amygdala subnuclei between PTSD and controls. However, differences between amygdala subnuclei covariance profiles observed in our study highlight the need to investigate amygdala subnuclei functional connectivity in PTSD using higher field strength fMRI for better spatial resolution.
Collapse
Affiliation(s)
- Elizabeth M Haris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia.
| | - Richard A Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia; Department of Radiology, Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
8
|
Jensen DEA, Ebmeier KP, Suri S, Rushworth MFS, Klein-Flügge MC. Nuclei-specific hypothalamus networks predict a dimensional marker of stress in humans. Nat Commun 2024; 15:2426. [PMID: 38499548 PMCID: PMC10948785 DOI: 10.1038/s41467-024-46275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders.
Collapse
Affiliation(s)
- Daria E A Jensen
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
- Clinic of Cognitive Neurology, University Medical Center Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany.
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
| |
Collapse
|
9
|
Kowalczyk OS, Medina S, Tsivaka D, McMahon SB, Williams SCR, Brooks JCW, Lythgoe DJ, Howard MA. Spinal fMRI demonstrates segmental organisation of functionally connected networks in the cervical spinal cord: A test-retest reliability study. Hum Brain Mapp 2024; 45:e26600. [PMID: 38339896 PMCID: PMC10831202 DOI: 10.1002/hbm.26600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
Resting functional magnetic resonance imaging (fMRI) studies have identified intrinsic spinal cord activity, which forms organised motor (ventral) and sensory (dorsal) resting-state networks. However, to facilitate the use of spinal fMRI in, for example, clinical studies, it is crucial to first assess the reliability of the method, particularly given the unique anatomical, physiological, and methodological challenges associated with acquiring the data. Here, we characterise functional connectivity relationships in the cervical cord and assess their between-session test-retest reliability in 23 young healthy volunteers. Resting-state networks were estimated in two ways (1) by estimating seed-to-voxel connectivity maps and (2) by calculating seed-to-seed correlations. Seed regions corresponded to the four grey matter horns (ventral/dorsal and left/right) of C5-C8 segmental levels. Test-retest reliability was assessed using the intraclass correlation coefficient. Spatial overlap of clusters derived from seed-to-voxel analysis between sessions was examined using Dice coefficients. Following seed-to-voxel analysis, we observed distinct unilateral dorsal and ventral organisation of cervical spinal resting-state networks that was largely confined in the rostro-caudal extent to each spinal segmental level, with more sparse connections observed between segments. Additionally, strongest correlations were observed between within-segment ipsilateral dorsal-ventral connections, followed by within-segment dorso-dorsal and ventro-ventral connections. Test-retest reliability of these networks was mixed. Reliability was poor when assessed on a voxelwise level, with more promising indications of reliability when examining the average signal within clusters. Reliability of correlation strength between seeds was highly variable, with the highest reliability achieved in ipsilateral dorsal-ventral and dorso-dorsal/ventro-ventral connectivity. However, the spatial overlap of networks between sessions was excellent. We demonstrate that while test-retest reliability of cervical spinal resting-state networks is mixed, their spatial extent is similar across sessions, suggesting that these networks are characterised by a consistent spatial representation over time.
Collapse
Affiliation(s)
- Olivia S. Kowalczyk
- Department of Neuroimaging, Institute of Psychology, Psychiatry & NeuroscienceKing's College LondonLondonUK
- The Wellcome Centre for Human Neuroimaging, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sonia Medina
- Department of Neuroimaging, Institute of Psychology, Psychiatry & NeuroscienceKing's College LondonLondonUK
| | - Dimitra Tsivaka
- Department of Neuroimaging, Institute of Psychology, Psychiatry & NeuroscienceKing's College LondonLondonUK
- Medical Physics Department, Medical SchoolUniversity of ThessalyLarisaGreece
| | | | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychology, Psychiatry & NeuroscienceKing's College LondonLondonUK
| | | | - David J. Lythgoe
- Department of Neuroimaging, Institute of Psychology, Psychiatry & NeuroscienceKing's College LondonLondonUK
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychology, Psychiatry & NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
10
|
Kinany N, Pirondini E, Micera S, Van De Ville D. Spinal Cord fMRI: A New Window into the Central Nervous System. Neuroscientist 2023; 29:715-731. [PMID: 35822665 PMCID: PMC10623605 DOI: 10.1177/10738584221101827] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the brain, the spinal cord forms the central nervous system. Initially considered a passive relay between the brain and the periphery, the spinal cord is now recognized as being active and plastic. Yet, it remains largely overlooked by the human neuroscience community, in stark contrast with the wealth of research investigating the brain. In this review, we argue that fMRI, traditionally used to image cerebral function, can be extended beyond the brain to help unravel spinal mechanisms involved in human behaviors. To this end, we first outline strategies that have been proposed to tackle the challenges inherent to spinal cord fMRI. Then, we discuss how they have been utilized to provide insights into the functional organization of spinal sensorimotor circuits, highlighting their potential to address fundamental and clinical questions. By summarizing guidelines and applications of spinal cord fMRI, we hope to stimulate and support further research into this promising yet underexplored field.
Collapse
Affiliation(s)
- Nawal Kinany
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Elvira Pirondini
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of BioEngineering, University of Pittsburgh, PA, USA
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
11
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. RESEARCH SQUARE 2023:rs.3.rs-3569352. [PMID: 38076888 PMCID: PMC10705693 DOI: 10.21203/rs.3.rs-3569352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The brainstem is a fundamental component of the central nervous system yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. Here we use high-resolution 7 Tesla fMRI to derive a functional connectome encompassing cortex as well as 58 brainstem nuclei spanning the midbrain, pons and medulla. We identify a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as multiple emergent phenomena including neurophysiological oscillatory rhythms, patterns of cognitive functional specialization, and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicate all findings using 3 Tesla data from the same participants. Collectively, we find that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson’s Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - James M. Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Haynes G, Muhammad F, Khan AF, Mohammadi E, Smith ZA, Ding L. The current state of spinal cord functional magnetic resonance imaging and its application in clinical research. J Neuroimaging 2023; 33:877-888. [PMID: 37740582 DOI: 10.1111/jon.13158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Since its development, spinal cord functional magnetic resonance imaging (fMRI) has utilized various methodologies and stimulation protocols to develop a deeper understanding of a healthy human spinal cord that lays a foundation for its use in clinical research and practice. In this review, we conducted a comprehensive literature search on spinal cord fMRI studies and summarized the recent advancements and resulting scientific achievements of spinal cord fMRI in the following three aspects: the current state of spinal cord fMRI methodologies and stimulation protocols, knowledge about the healthy spinal cord's functions obtained via spinal cord fMRI, and fMRI's exemplary usage in spinal cord diseases and injuries. We conclude with a discussion that, while technical challenges exist, novel fMRI technologies for and new knowledge about the healthy human spinal cord have been established. Empowered by these developments, investigations of pathological and injury states within the spinal cord have become the next important direction of spinal cord fMRI. Recent clinical investigations into spinal cord pathologies, for example, fibromyalgia, multiple sclerosis, spinal cord injury, and cervical spondylotic myelopathy, have already provided deep insights into spinal cord impairments and the time course of impairment-caused changes. We expect that future spinal cord fMRI advancement and research development will further enhance our understanding of various spinal cord diseases and provide the foundation for evaluating existing and developing new treatment plans.
Collapse
Affiliation(s)
- Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ali F Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
13
|
Hossein S, Cooper JA, DeVries BAM, Nuutinen MR, Hahn EC, Kragel PA, Treadway MT. Effects of acute stress and depression on functional connectivity between prefrontal cortex and the amygdala. Mol Psychiatry 2023; 28:4602-4612. [PMID: 37076616 PMCID: PMC11887625 DOI: 10.1038/s41380-023-02056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Stress is known to be a significant risk factor for the development of Major Depressive Disorder (MDD), yet the neural mechanisms that underlie this risk are poorly understood. Prior work has heavily implicated the corticolimbic system in the pathophysiology of MDD. In particular, the prefrontal cortex (PFC) and amygdala play a central role in regulating the response to stress, with dorsal PFC and ventral PFC exhibiting reciprocal excitatory and inhibitory influences on amygdala subregions. However, it remains unclear how best to disentangle the impact of stress from the impact of current MDD symptoms on this system. Here, we examined stress-induced changes in resting state functional connectivity (rsFC) within an a priori corticolimbic network in MDD patients and healthy controls (total n = 80) before and after an acute stressor or a "no stress" control condition. Using graph theoretic analysis, we found that connectivity between basolateral amygdala and dorsal prefrontal nodes of the corticolimbic network had a negative association with individual differences in chronic perceived stress at baseline. Following the acute stressor, healthy individuals showed a reduction of the amygdala node strength, while MDD patients exhibited little change. Finally, dorsal PFC-particularly dorsomedial PFC- connectivity to the basolateral amygdala was associated with the strength of the basolateral amygdala responses to loss feedback during a reinforcement learning task. These findings highlight attenuated connectivity between basolateral amygdala and prefrontal cortex in patients with MDD. In healthy individuals, acute stress exposure was found to push the corticolimbic network to a "stress-phenotype" that may be chronically present in patients with current depression and high levels of perceived stress. In sum, these results help to identify circuit mechanisms underlying the effects of acute stress and their role in mood disorders.
Collapse
Affiliation(s)
- Shabnam Hossein
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jessica A Cooper
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Emma C Hahn
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
14
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564245. [PMID: 37961347 PMCID: PMC10634864 DOI: 10.1101/2023.10.26.564245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The brainstem is a fundamental component of the central nervous system yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. Here we use high-resolution 7 Tesla fMRI to derive a functional connectome encompassing cortex as well as 58 brainstem nuclei spanning the midbrain, pons and medulla. We identify a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as multiple emergent phenomena including neurophysiological oscillatory rhythms, patterns of cognitive functional specialization, and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicate all findings using 3 Tesla data from the same participants. Collectively, we find that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson’s Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - James M. Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
15
|
Cui L, Zhang Z, Huang YL, Xie F, Guan YH, Lo CYZ, Guo YH, Jiang JH, Guo QH. Brain amyloid-β deposition associated functional connectivity changes of ultra-large structural scale in mild cognitive impairment. Brain Imaging Behav 2023; 17:494-506. [PMID: 37188840 DOI: 10.1007/s11682-023-00780-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
In preclinical Alzheimer's disease, neuro-functional changes due to amyloid-β (Aβ) deposition are not synchronized in different brain lobes and subcortical nuclei. This study aimed to explore the correlation between brain Aβ burden, connectivity changes in an ultra-large structural scale, and cognitive function in mild cognitive impairment. Participants with mild cognitive impairment were recruited and underwent florbetapir (F18-AV45) PET, resting-state functional MRI, and multidomain neuropsychological tests. AV-45 standardized uptake value ratio (SUVR) and functional connectivity of all participants were calculated. Of the total 144 participants, 72 were put in the low Aβ burden group and 72 in the high Aβ burden group. In the low Aβ burden group, all connectivities between lobes and nuclei had no correlation with SUVR. In the high Aβ burden group, SUVR showed negative correlations with the Subcortical-Occipital connectivity (r=-0.36, P = 0.02) and Subcortical-Parietal connectivity (r=-0.26, P = 0.026). Meanwhile, in the high Aβ burden group, SUVR showed positive correlations with the Temporal-Prefrontal connectivity (r = 0.27, P = 0.023), Temporal-Occipital connectivity (r = 0.24, P = 0.038), and Temporal-Parietal connectivity (r = 0.32, P = 0.006). Subcortical to Occipital and Parietal connectivities had positive correlations with general cognition, language, memory, and executive function. Temporal to Prefrontal, Occipital, and Parietal connectivities had negative correlations with memory function, executive function, and visuospatial function, and a positive correlation with language function. In conclusion, Individuals with mild cognitive impairment with high Aβ burden have Aβ-related bidirectional functional connectivity changes between lobes and subcortical nuclei that are associated with cognitive decline in multiple domains. These connectivity changes reflect neurological impairment and failed compensation.
Collapse
Affiliation(s)
- Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yan-Lu Huang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Yi-Hui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200040, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yi-Han Guo
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jie-Hui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Qi-Hao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
16
|
Groot JM, Miletic S, Isherwood SJS, Tse DHY, Habli S, Håberg AK, Forstmann BU, Bazin PL, Mittner M. Echoes from Intrinsic Connectivity Networks in the Subcortex. J Neurosci 2023; 43:6609-6618. [PMID: 37562962 PMCID: PMC10538587 DOI: 10.1523/jneurosci.1020-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcortical regions can be decomposed into multiple independent subsignals that correlate with, or "echo," the activity in functional networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heterogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography. Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous cognitive dynamics during rest.SIGNIFICANCE STATEMENT Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analysis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI research. The results have implications for understanding how the functional organization of the subcortex facilitates integrative processing through cross-network information convergence, paving the way for future work aimed at improving our knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.
Collapse
Affiliation(s)
- Josephine M Groot
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Steven Miletic
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Scott J S Isherwood
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Desmond H Y Tse
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sarah Habli
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, 8900, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, 8900, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, 7006, Norway
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Pierre-Louis Bazin
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Departments of Neurophysics and Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04303, Germany
| | - Matthias Mittner
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
17
|
Kaptan M, Horn U, Vannesjo SJ, Mildner T, Weiskopf N, Finsterbusch J, Brooks JCW, Eippert F. Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources. Neuroimage 2023; 275:120152. [PMID: 37142169 PMCID: PMC10262064 DOI: 10.1016/j.neuroimage.2023.120152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability - due to the removal of stable and participant-specific noise patterns - whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner.
Collapse
Affiliation(s)
- Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S Johanna Vannesjo
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Toralf Mildner
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), Norwich, UK
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
18
|
Tsivaka D, Williams SCR, Medina S, Kowalczyk OS, Brooks JCW, Howard MA, Lythgoe DJ, Tsougos I. A second-order and slice-specific linear shimming technique to improve spinal cord fMRI. Magn Reson Imaging 2023:S0730-725X(23)00108-X. [PMID: 37353180 DOI: 10.1016/j.mri.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
PURPOSE To develop a second-order and slice-specific linear shimming technique and investigate its efficiency in the mitigation of signal loss and distortions, and the increase of temporal signal-to-noise ratio (tSNR) within the spinal cord during functional Magnetic Resonance Imaging (fMRI) of the human cervical spinal cord. METHODS All scans were performed on a General Electric Discovery MR750 3 T scanner, using a head, neck and spine coil and a neurovascular array. To improve B0 homogeneity, a field map was acquired, and second-order shims (SOS) were optimized over manually defined regions of interest (ROIs). Signal loss from dephasing by susceptibility-induced gradients was reduced by optimizing slice-specific x-, y- and z-shims to maximize signal within the spinal cord. Spectral-spatial excitation pulses were used in both the slice-specific linear shimming calibration scan and fMRI acquisitions. The shimming technique's efficiency was initially tested on eight healthy volunteers by comparing tSNR between images acquired with the manufacturer's standard linear shimming and with our SOS and xyz-shimming technique. Subsequently, using an increased spatial resolution as needed for fMRI of the spinal cord, tSNR measurements were performed on resting-state fMRI images from 14 healthy participants. RESULTS Spinal fMRI images acquired with only the standard linear shimming suffered from severe signal loss below the C5 vertebral level. The developed shimming technique compensated for this loss especially at levels C6 and C7, while tSNR was significantly higher at all vertebral levels with SOS and xyz-shimming than without it. CONCLUSION A comprehensive shimming approach which includes the use of spectral-spatial excitation pulses along with both second-order and slice-specific linear shim optimization reduces regional signal loss and increases tSNR along the c-spine (C3-C7), improving the ability to record functional signals from the human spinal cord.
Collapse
Affiliation(s)
- D Tsivaka
- Medical Physics Department, Medical School, University of Thessaly, Larisa, Greece; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Medina
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - O S Kowalczyk
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - J C W Brooks
- School of Psychology, University of East Anglia, Norwich, UK
| | - M A Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - D J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - I Tsougos
- Medical Physics Department, Medical School, University of Thessaly, Larisa, Greece; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
19
|
Alahmadi AA. Functional connectivity of sub-cortical brain regions: disparities and similarities. Neuroreport 2023; 34:214-219. [PMID: 36789843 PMCID: PMC10516169 DOI: 10.1097/wnr.0000000000001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 02/16/2023]
Abstract
Sub-cortical grey matter structures, such as the putamen, pallidum, caudate, thalamus, amygdala and hippocampus, play substantial roles in both simple and complex brain functions, including regulation of pleasure and emotions; control of movements; learning; decision-making; language development; and sensory, cognitive, social and other higher-order functions. Most of these regions act as information hubs for the nervous system, relaying and controlling the flow of information to various portions of the brain. To further understand the complex neurophysiological characteristics of sub-cortical areas, the aim of this study was to investigate the functional integrations of six sub-cortical areas to different major functional brain networks. One hundred ninety-eight healthy individuals were examined using resting-state functional MRI. The seeds identified in this study were six sub-cortical deep grey matter regions, namely putamen, pallidum, caudate, thalamus, amygdala and hippocampus. The analysis indicated that the link between the sub-cortical regions and some functional brain networks was similar in some aspects, but there were disparities in the mechanism underlying such a link and in the existence of functional connections between these regions and networks. Despite the substantial functional connectivity linkages between the sub-cortical regions, discrepancies were still noted. On the basis of the connections to the majority of the major brain networks, this study demonstrated the essential functional roles and involvements of the sub-cortical regions. This finding is consistent with an earlier report that revealed a substantial role of the sub-cortical regions in several brain functions.
Collapse
Affiliation(s)
- Adnan A.S. Alahmadi
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Sabaroedin K, Tiego J, Fornito A. Circuit-Based Approaches to Understanding Corticostriatothalamic Dysfunction Across the Psychosis Continuum. Biol Psychiatry 2023; 93:113-124. [PMID: 36253195 DOI: 10.1016/j.biopsych.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Dopamine is known to play a role in the pathogenesis of psychotic symptoms, but the mechanisms driving dopaminergic dysfunction in psychosis remain unclear. Considerable attention has focused on the role of corticostriatothalamic (CST) circuits, given that they regulate and are modulated by the activity of dopaminergic cells in the midbrain. Preclinical studies have proposed multiple models of CST dysfunction in psychosis, each prioritizing different brain regions and pathophysiological mechanisms. A particular challenge is that CST circuits have undergone considerable evolutionary modification across mammals, complicating comparisons across species. Here, we consider preclinical models of CST dysfunction in psychosis and evaluate the degree to which they are supported by evidence from human resting-state functional magnetic resonance imaging studies conducted across the psychosis continuum, ranging from subclinical schizotypy to established schizophrenia. In partial support of some preclinical models, human studies indicate that dorsal CST and hippocampal-striatal functional dysconnectivity are apparent across the psychosis spectrum and may represent a vulnerability marker for psychosis. In contrast, midbrain dysfunction may emerge when symptoms warrant clinical assistance and may thus be a trigger for illness onset. The major difference between clinical and preclinical findings is the strong involvement of the dorsal CST in the former, consistent with an increasing prominence of this circuitry in the primate brain. We close by underscoring the need for high-resolution characterization of phenotypic heterogeneity in psychosis to develop a refined understanding of how the dysfunction of specific circuit elements gives rise to distinct symptom profiles.
Collapse
Affiliation(s)
- Kristina Sabaroedin
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Klein-Flügge MC, Jensen DEA, Takagi Y, Priestley L, Verhagen L, Smith SM, Rushworth MFS. Relationship between nuclei-specific amygdala connectivity and mental health dimensions in humans. Nat Hum Behav 2022; 6:1705-1722. [PMID: 36138220 PMCID: PMC7613949 DOI: 10.1038/s41562-022-01434-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
There has been increasing interest in using neuroimaging measures to predict psychiatric disorders. However, predictions usually rely on large brain networks and large disorder heterogeneity. Thus, they lack both anatomical and behavioural specificity, preventing the advancement of targeted interventions. Here we address both challenges. First, using resting-state functional magnetic resonance imaging, we parcellated the amygdala, a region implicated in mood disorders, into seven nuclei. Next, a questionnaire factor analysis provided subclinical mental health dimensions frequently altered in anxious-depressive individuals, such as negative emotions and sleep problems. Finally, for each behavioural dimension, we identified the most predictive resting-state functional connectivity between individual amygdala nuclei and highly specific regions of interest, such as the dorsal raphe nucleus in the brainstem or medial frontal cortical regions. Connectivity in circumscribed amygdala networks predicted behaviours in an independent dataset. Our results reveal specific relations between mental health dimensions and connectivity in precise subcortical networks.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
| | - Daria E A Jensen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Yu Takagi
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Cerebellar engagement in the attachment behavioral system. Sci Rep 2022; 12:13571. [PMID: 35945247 PMCID: PMC9363408 DOI: 10.1038/s41598-022-17722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
Brain structural bases of individual differences in attachment are not yet fully clarified. Given the evidence of relevant cerebellar contribution to cognitive, affective, and social functions, the present research was aimed at investigating potential associations between attachment dimensions (through the Attachment Style Questionnaire, ASQ) and cerebellar macro- and micro-structural measures (Volumetric and Diffusion Tensor Imaging data). In a sample of 79 healthy subjects, cerebellar and neocortical volumetric data were correlated with ASQ scores at the voxel level within specific Regions Of Interest. Also, correlations between ASQ scores and age, years of education, anxiety and depression levels were performed to control for the effects of sociodemographic and psychological variables on neuroimaging results. Positive associations between scores of the Preoccupation with Relationships (ASQ subscale associated to insecure/anxious attachment) and cortical volume were found in the cerebellum (right lobule VI and left Crus 2) and neocortex (right medial OrbitoFrontal Cortex, OFC) regions. Cerebellar contribution to the attachment behavioral system reflects the more general cerebellar engagement in the regulation of emotional and social behaviors. Cerebellar properties of timing, prediction, and learning well integrate with OFC processing, supporting the regulation of attachment experiences. Cerebellar areas might be rightfully included in the attachment behavioral system.
Collapse
|
23
|
Alami Marrouni K, Duquette P. Clinical insights on the spasticity-plus syndrome in multiple sclerosis. Front Neurol 2022; 13:958665. [PMID: 35989901 PMCID: PMC9390998 DOI: 10.3389/fneur.2022.958665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kanza Alami Marrouni
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurology, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
- *Correspondence: Pierre Duquette
| |
Collapse
|
24
|
Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord 2022; 23:719-731. [PMID: 35380355 PMCID: PMC9307542 DOI: 10.1007/s11154-022-09720-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Functional neuroimaging has become a widely used tool in obesity and eating disorder research to explore the alterations in neurobiology that underlie overeating and binge eating behaviors. Current and traditional neurobiological models underscore the importance of impairments in brain systems supporting reward, cognitive control, attention, and emotion regulation as primary drivers for overeating. Due to the technical limitations of standard field strength functional magnetic resonance imaging (fMRI) scanners, human neuroimaging research to date has focused largely on cortical and basal ganglia effects on appetitive behaviors. The present review draws on animal and human research to highlight how neural signaling encoding energy regulation, reward-learning, and habit formation converge on hypothalamic, brainstem, thalamic, and striatal regions to contribute to overeating in humans. We also consider the role of regions such as the mediodorsal thalamus, ventral striatum, lateral hypothalamus and locus coeruleus in supporting habit formation, inhibitory control of food craving, and attentional biases. Through these discussions, we present proposals on how the neurobiology underlying these processes could be examined using functional neuroimaging and highlight how ultra-high field 7-Tesla (7 T) fMRI may be leveraged to elucidate the potential functional alterations in subcortical networks. Focus is given to how interactions of these regions with peripheral endocannabinoids and neuropeptides, such as orexin, could be explored. Technical and methodological aspects regarding the use of ultra-high field 7 T fMRI to study eating behaviors are also reviewed.
Collapse
Affiliation(s)
- Po-Han Kung
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Neuroscience Program, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Carlos III Health Institute, Madrid, Spain
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Multimodal Gradient Mapping of Rodent Hippocampus. Neuroimage 2022; 253:119082. [PMID: 35278707 DOI: 10.1016/j.neuroimage.2022.119082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 01/01/2023] Open
Abstract
The hippocampus plays a central role in supporting our coherent and enduring sense of self and our place in the world. Understanding its functional organisation is central to understanding this complex role. Previous studies suggest function varies along a long hippocampal axis, but there is disagreement about the presence of sharp discontinuities or gradual change along that axis. Other open questions relate to the underlying drivers of this variation and the conservation of organisational principles across species. Here, we delineate the primary organisational principles underlying patterns of hippocampal functional connectivity (FC) in the mouse using gradient analysis on resting state fMRI data. We further applied gradient analysis to mouse gene co-expression data to examine the relationship between variation in genomic anatomy and functional organisation. Two principal FC gradients along a hippocampal axis were revealed. The principal gradient exhibited a sharp discontinuity that divided the hippocampus into dorsal and ventral compartments. The second, more continuous, gradient followed the long axis of the ventral compartment. Dorsal regions were more strongly connected to areas involved in spatial navigation while ventral regions were more strongly connected to areas involved in emotion, recapitulating patterns seen in humans. In contrast, gene co-expression gradients showed a more segregated and discrete organisation. Our findings suggest that hippocampal functional organisation exhibits both sharp and gradual transitions and that hippocampal genomic anatomy exerts only a subtle influence on this organisation.
Collapse
|
26
|
Chen Z, Zhang R, Huo H, Liu P, Zhang C, Feng T. Functional connectome of human cerebellum. Neuroimage 2022; 251:119015. [DOI: 10.1016/j.neuroimage.2022.119015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022] Open
|
27
|
Sengupta A, Mishra A, Wang F, Li M, Yang PF, Chen LM, Gore JC. Functional networks in non-human primate spinal cord and the effects of injury. Neuroimage 2021; 240:118391. [PMID: 34271158 PMCID: PMC8527400 DOI: 10.1016/j.neuroimage.2021.118391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Spontaneous fluctuations of Blood Oxygenation-Level Dependent (BOLD) MRI signal in a resting state have previously been detected and analyzed to describe intrinsic functional networks in the spinal cord of rodents, non-human primates and human subjects. In this study we combined high resolution imaging at high field with data-driven Independent Component Analysis (ICA) to i) delineate fine-scale functional networks within and between segments of the cervical spinal cord of monkeys, and also to ii) characterize the longitudinal effects of a unilateral dorsal column injury on these networks. Seven distinct functional hubs were revealed within each spinal segment, with new hubs detected at bilateral intermediate and gray commissure regions in addition to the bilateral dorsal and ventral horns previously reported. Pair-wise correlations revealed significantly stronger connections between hubs on the dominant hand side. Unilateral dorsal-column injuries disrupted predominantly inter-segmental rather than intra-segmental functional connectivities as revealed by correlation strengths and graph-theory based community structures. The effects of injury on inter-segmental connectivity were evident along the length of the cord both below and above the lesion region. Connectivity strengths recovered over time and there was revival of inter-segmental communities as animals recovered function. BOLD signals of frequency 0.01-0.033 Hz were found to be most affected by injury. The results in this study provide new insights into the intrinsic functional architecture of spinal cord and underscore the potential of functional connectivity measures to characterize changes in networks after an injury and during recovery.
Collapse
Affiliation(s)
- Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|