1
|
Grabot L, Merholz G, Winawer J, Heeger DJ, Dugué L. Traveling waves in the human visual cortex: An MEG-EEG model-based approach. PLoS Comput Biol 2025; 21:e1013007. [PMID: 40245091 PMCID: PMC12037073 DOI: 10.1371/journal.pcbi.1013007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/28/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
Brain oscillations might be traveling waves propagating in cortex. Studying their propagation within single cortical areas has mostly been restricted to invasive measurements. Their investigation in healthy humans, however, requires non-invasive recordings, such as MEG or EEG. Identifying traveling waves with these techniques is challenging because source summation, volume conduction, and low signal-to-noise ratios make it difficult to localize cortical activity from sensor responses. The difficulty is compounded by the lack of a known ground truth in traveling wave experiments. Rather than source-localizing cortical responses from sensor activity, we developed a two-part model-based neuroimaging approach: (1) The putative neural sources of a propagating oscillation were modeled within primary visual cortex (V1) via retinotopic mapping from functional MRI recordings (encoding model); and (2) the modeled sources were projected onto MEG and EEG sensors to predict the resulting signal using a biophysical head model. We tested our model by comparing its predictions against the MEG-EEG signal obtained when participants viewed visual stimuli designed to elicit either fovea-to-periphery or periphery-to-fovea traveling waves or standing waves in V1, in which ground truth cortical waves could be reasonably assumed. Correlations on within-sensor phase and amplitude relations between predicted and measured data revealed good model performance. Crucially, the model predicted sensor data more accurately when the input to the model was a traveling wave going in the stimulus direction compared to when the input was a standing wave, or a traveling wave in a different direction. Furthermore, model accuracy peaked at the spatial and temporal frequency parameters of the visual stimulation. Together, our model successfully recovers traveling wave properties in cortex when they are induced by traveling waves in stimuli. This provides a sound basis for using MEG-EEG to study endogenous traveling waves in cortex and test hypotheses related with their role in cognition.
Collapse
Affiliation(s)
- Laetitia Grabot
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Laboratoire des Systèmes Perceptifs, Département d’études Cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Garance Merholz
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - David J. Heeger
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Laura Dugué
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Loosen AM, Kato A, Gu X. Revisiting the role of computational neuroimaging in the era of integrative neuroscience. Neuropsychopharmacology 2024; 50:103-113. [PMID: 39242921 PMCID: PMC11525590 DOI: 10.1038/s41386-024-01946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Computational models have become integral to human neuroimaging research, providing both mechanistic insights and predictive tools for human cognition and behavior. However, concerns persist regarding the ecological validity of lab-based neuroimaging studies and whether their spatiotemporal resolution is not sufficient for capturing neural dynamics. This review aims to re-examine the utility of computational neuroimaging, particularly in light of the growing prominence of alternative neuroscientific methods and the growing emphasis on more naturalistic behaviors and paradigms. Specifically, we will explore how computational modeling can both enhance the analysis of high-dimensional imaging datasets and, conversely, how neuroimaging, in conjunction with other data modalities, can inform computational models through the lens of neurobiological plausibility. Collectively, this evidence suggests that neuroimaging remains critical for human neuroscience research, and when enhanced by computational models, imaging can serve an important role in bridging levels of analysis and understanding. We conclude by proposing key directions for future research, emphasizing the development of standardized paradigms and the integrative use of computational modeling across neuroimaging techniques.
Collapse
Affiliation(s)
- Alisa M Loosen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ayaka Kato
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Xiaosi Gu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Kurki I, Hyvärinen A, Henriksson L. Dynamics of retinotopic spatial attention revealed by multifocal MEG. Neuroimage 2022; 263:119643. [PMID: 36150606 DOI: 10.1016/j.neuroimage.2022.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022] Open
Abstract
Visual focal attention is both fast and spatially localized, making it challenging to investigate using human neuroimaging paradigms. Here, we used a new multivariate multifocal mapping method with magnetoencephalography (MEG) to study how focal attention in visual space changes stimulus-evoked responses across the visual field. The observer's task was to detect a color change in the target location, or at the central fixation. Simultaneously, 24 regions in visual space were stimulated in parallel using an orthogonal, multifocal mapping stimulus sequence. First, we used univariate analysis to estimate stimulus-evoked responses in each channel. Then we applied multivariate pattern analysis to look for attentional effects on the responses. We found that attention to a target location causes two spatially and temporally separate effects. Initially, attentional modulation is brief, observed at around 60-130 ms post stimulus, and modulates responses not only at the target location but also in adjacent regions. A later modulation was observed from around 200 ms, which was specific to the location of the attentional target. The results support the idea that focal attention employs several processing stages and suggest that early attentional modulation is less spatially specific than late.
Collapse
Affiliation(s)
- Ilmari Kurki
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| | - Aapo Hyvärinen
- Department of Computer Science, University of Helsinki, Finland
| | - Linda Henriksson
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; MEG Core and Aalto Behavioral Laboratory, Aalto NeuroImaging, Aalto University, Finland.
| |
Collapse
|