1
|
Ventura‐Bort C, Giraudier M, Weymar M. Transcutaneous Auricular Vagus Nerve Stimulation Enhances Emotional Processing and Long-Term Recognition Memory: Electrophysiological Evidence Across Two Studies. Psychophysiology 2025; 62:e70034. [PMID: 40066789 PMCID: PMC11894791 DOI: 10.1111/psyp.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 03/15/2025]
Abstract
Recently, we found that continuous transcutaneous auricular vagus nerve stimulation (taVNS) facilitates the encoding and later recollection of emotionally relevant information, as indicated by differences in the late positive potential (LPP), memory performance, and late ERP Old/New effect. Here, we aimed to conceptually replicate and extend these findings by investigating the effects of different time-dependent taVNS stimulation protocols. In Study 1, an identical paradigm to our previous study was employed with interval stimulation (30-s on/off). Participants viewed unpleasant and neutral scenes on two consecutive days while receiving taVNS or sham stimulation and completed a recognition test 1 week later. Replicating previous results, unpleasant images encoded under taVNS, compared to sham stimulation, elicited larger amplitudes in an earlier window of the LPP during encoding, as well as more pronounced late Old/New differences. However, no effects of taVNS on memory performance were found. In Study 2, we followed up on these findings by synchronizing the stimulation cycle with image presentation to determine the taVNS effects for images encoded during the on and off cycles. We could replicate the enhancing effects of taVNS on brain potentials (early LPP and late Old/New differences) and found that taVNS improved recollection-based memory performance for both unpleasant and neutral images, independently of the stimulation cycle. Overall, our results suggest that taVNS increases electrophysiological correlates of emotional encoding and retrieval in a time-independent manner, substantiating the vagus nerve's role in emotional processing and memory formation, opening new venues for improving mnemonic processes in both clinical and non-clinical populations.
Collapse
Affiliation(s)
- Carlos Ventura‐Bort
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
- Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| |
Collapse
|
2
|
Vabba A, Suzuki K, Doric M, Möller TJ, Garfinkel S, Critchley H. The Vagus Nerve as a Gateway to Body Ownership: taVNS Reduces Susceptibility to a Virtual Version of the Cardiac and Tactile Rubber Hand Illusion. Psychophysiology 2025; 62:e70040. [PMID: 40097357 PMCID: PMC11913772 DOI: 10.1111/psyp.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has been shown to influence cognitive and emotional function and enhance interoceptive awareness. This study investigates if taVNS effects extend to the experience of body ownership, as measured via susceptibility to the rubber hand illusion (RHI) in a virtual reality setting. The experiment involved 27 participants who underwent real and sham stimulation in two separate sessions while experiencing synchronous or asynchronous visuo-cardiac and visuo-tactile feedback on a virtual arm in place of their own. Results indicated that active compared to sham taVNS decreased sensitivity to the illusion in both cardiac and tactile trials. Specifically, a greater proprioceptive drift difference (PDD) toward the rubber hand was observed for synchronous compared to asynchronous trials only during sham (t(26) = -4.58, pbonf < 0.001) but not during active (pbonf = 1.00) stimulation. A similar pattern was also observed for subjective ownership, where synchronous trials led to greater subjective ownership than asynchronous trials only during sham (t(26) = -3.52, pbonf = 0.010) but not during active (pbonf = 1.00) stimulation. These findings suggest that stimulation might enhance body ownership, making individuals more attuned to their real bodily signals and less susceptible to bodily illusions. Additionally, physiological measures such as heart rate (HR), heart rate variability (HRV), and skin sympathetic nervous activity (SKNA) were assessed to explore the autonomic effects of taVNS. We observed a decrease in HR during active stimulation (t(26) = 4.30, pbonf < 0.001), and an increase in SKNA during both sham (t(26) = -4.40, pbonf < 0.001) and active stimulation (t(26) = -4.85, pbonf < 0.002). These findings contribute to the understanding of the vagus nerve's role in integrating visceral and somatosensory signals, with implications for clinical applications in conditions characterized by altered interoception and body ownership.
Collapse
Affiliation(s)
- Alisha Vabba
- Department of Clinical Neuroscience, Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
- Sapienza University of Rome and CLN2S@SapienzaIstituto Italiano di TecnologiaRomaItaly
| | - Keisuke Suzuki
- Center for Human Nature, Artificial Intelligence and Neuroscience (CHAIN)Hokkaido UniversitySapporoJapan
| | - Milica Doric
- Department of Clinical Neuroscience, Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| | | | - Sarah Garfinkel
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Hugo Critchley
- Department of Clinical Neuroscience, Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
| |
Collapse
|
3
|
Albayrak S, Aydin B, Özen G, Yalçin F, Balık M, Yanık H, Urgen BA, Veldhuizen MG. Transcutaneous Vagus Nerve Stimulation Effects on Flavor-Evoked Electroencephalogram and Eye-Blink Rate. Brain Behav 2025; 15:e70355. [PMID: 40079485 PMCID: PMC11904970 DOI: 10.1002/brb3.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/31/2024] [Accepted: 02/01/2025] [Indexed: 03/15/2025] Open
Abstract
INTRODUCTION Chemosensory food signals are carried by the vagus nerve (VN) from the gut to the brain and these signals contribute to communicating fullness and caloric value of the consumed food in regulatory and reward-related contexts. Here, we aimed to explore whether neural responses to flavor can be modulated through noninvasive VN stimulation, which can be done transcutaneously (transcutaneous vagus nerve stimulation [tVNS]) on the outer ear via the auricular branch of VN. The ideal stimulation location on the outer ear for tVNS is not agreed on but two candidate locations are cymba conchae and tragus. METHODS In this study, we explore the optimal stimulation location for tVNS (cymba conchae, tragus, and cymba conchae and tragus) and timing of tVNS relative to chocolate milk presentation (during, after) in a within-participants design (15 participants). We examined various measures of efficacy; event-related potential from electroencephalogram, eye-blink rate, perceptual and hedonic aspects of flavor, swallowing behavior, and consumption behavior. RESULTS We observed no effect of stimulation location on any of the dependent variables. Unexpectedly, we observed a large effect of food consumption on spontaneous eye-blink rate. CONCLUSION In conclusion, overall we did not observe a clear optimal ear location for tVNS-induced modulation of neurophysiological, perceptual, and behavioral variables. Future studies may confirm whether spontaneous eye-blink rate can be a sensitive proxy for food reward-related phasic dopamine shifts.
Collapse
Affiliation(s)
- Samet Albayrak
- Cognitive Science, Informatics InstituteMiddle East Technical UniversityAnkaraTürkiye
| | - Berfin Aydin
- Department of Psychology and NeuroscienceBilkent UniversityAnkaraTürkiye
| | - Gizem Özen
- Cognitive Science, Informatics InstituteMiddle East Technical UniversityAnkaraTürkiye
| | - Faruk Yalçin
- Department of PsychologyPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Merve Balık
- Psychology DepartmentLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Hüseyin Yanık
- Information Systems and TechnologiesMersin UniversityMersinTürkiye
| | - Burcu A. Urgen
- Department of Psychology and NeuroscienceBilkent UniversityAnkaraTürkiye
- Aysel Sabuncu Brain Research CenterBilkent UniversityAnkaraTürkiye
- National Magnetic Resonance Research Center (UMRAM)Bilkent UniversityAnkaraTürkiye
| | - Maria Geraldine Veldhuizen
- National Magnetic Resonance Research Center (UMRAM)Bilkent UniversityAnkaraTürkiye
- Department of Psychology, Faculty of Humanities and Social SciencesMersin UniversityMersinTürkiye
- Department of Anatomy, Faculty of MedicineMersin UniversityMersinTürkiye
| |
Collapse
|
4
|
Pervaz I, Thurn L, Vezzani C, Kaluza L, Kühnel A, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation alter pupil dilation? A living Bayesian meta-analysis. Brain Stimul 2025; 18:148-157. [PMID: 39884386 DOI: 10.1016/j.brs.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Transcutaneous vagus nerve stimulation (tVNS) has emerged as a promising technique to modulate autonomic functions, and pupil dilation has been recognized as a promising biomarker for tVNS-induced monoaminergic release. Nevertheless, studies on the effectiveness of various tVNS protocols have produced heterogeneous results on pupil dilation to date. METHODS Here, we synthesize the existing evidence and compare conventional ("continuous") and pulsed stimulation protocols using a Bayesian meta-analysis. To maintain a living version, we developed a Shiny App with the possibility to incorporate newly published studies in the future. Based on a systematic review, we included 18 studies (N = 771) applying either conventional or pulsed stimulation protocols. RESULTS Across studies, we found anecdotal evidence for the null hypothesis, showing that taVNS does not increase pupil size (g = 0.15, 95 % CI = [0.03, 0.27], BF01 = 1.0). Separating studies according to conventional vs. pulsed protocols revealed that studies using pulsed taVNS provide strong evidence for the alternative hypothesis(g = 0.36, 95 % CI = [0.19, 0.53], BF10 = 50.8) while conventional taVNS studies provide strong evidence for the null hypothesis (g = 0.002, CI = [-0.14, 0.14], BF01 = 21.9). CONCLUSION Our meta-analysis highlights differential effects of conventional and pulsed taVNS protocols on pupil dilation. These findings underscore the relevance of taVNS protocols in optimizing its use for specific applications that may require modulation of tonic vs. phasic monoaminergic responses and might also help to gain mechanistic insights into potential therapeutic effects.
Collapse
Affiliation(s)
- Ipek Pervaz
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lilly Thurn
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Cecilia Vezzani
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Luisa Kaluza
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anne Kühnel
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Germany.
| |
Collapse
|
5
|
Kaduk K, Petrella A, Müller SJ, Koenig J, Kroemer NB. Non-Invasive Auricular Vagus Nerve Stimulation Decreases Heart Rate Variability Independent of Caloric Load. Psychophysiology 2025; 62:e70017. [PMID: 40007175 PMCID: PMC11862327 DOI: 10.1111/psyp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The vagus nerve is crucial in regulating physiological functions, including the cardiovascular system. While heart rate (HR) and its variability (HRV) may provide non-invasive proxies of cardiac vagal activity, transcutaneous auricular vagus nerve stimulation (taVNS) has yielded mixed effects, with limited research on right branch stimulation. In a randomized crossover study with 36 healthy participants, we investigated taVNS effects on HR and HRV indexed by SDRR, RMSSD, HF-HRV, and LF/HF ratio. To assess the impact of the stimulation side (left vs. right ear) on cardiovascular indices and interaction with the physiological state, we recorded electrocardiograms in four sessions per person, covering three session phases: baseline, during stimulation (taVNS vs. sham), and post-milkshake consumption with stimulation. First, we found moderate evidence against taVNS affecting HR (BF10 = 0.21). Second, taVNS decreased HRV (multivariate p = 0.004) independent of physiological state, with strong evidence for RMSSD (BF10 = 15.11) and HF-HRV (BF10 = 11.80). Third, taVNS-induced changes were comparable across sides and stronger than sham, indicating consistent cardiovascular effects independent of the stimulation side. We conclude that taVNS reduces HRV as indexed by RMSSD, HF-HRV, and SDRR without altering HR, contradicting the assumption that taVNS per se increases cardiovagal activity as indexed by increased HRV due to stimulating vagal afferents. Instead, our results support the role of vagal afferent activation in arousal. Crucially, taVNS on both sides can safely modulate the cardiovascular system without increasing the risk of bradycardia or causing adverse events in healthy participants, offering new treatment possibilities.
Collapse
Affiliation(s)
- Kristin Kaduk
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
- German Center for Mental Health (DZPG), partner site TübingenTübingenGermany
| | - Alessandro Petrella
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
| | - Sophie J. Müller
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
| | - Julian Koenig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Nils B. Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
- German Center for Mental Health (DZPG), partner site TübingenTübingenGermany
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of MedicineUniversity of BonnBonnGermany
| |
Collapse
|
6
|
Giraudier M, Ventura-Bort C, Weymar M. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the P300: Do Stimulation Duration and Stimulation Type Matter? Brain Sci 2024; 14:690. [PMID: 39061430 PMCID: PMC11274684 DOI: 10.3390/brainsci14070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has attracted increasing interest as a neurostimulation tool with potential applications in modulating cognitive processes such as attention and memory, possibly through the modulation of the locus-coeruleus noradrenaline system. Studies examining the P300 brain-related component as a correlate of noradrenergic activity, however, have yielded inconsistent findings, possibly due to differences in stimulation parameters, thus necessitating further investigation. In this event-related potential study involving 61 participants, therefore, we examined how changes in taVNS parameters, specifically stimulation type (interval vs. continuous stimulation) and duration, influence P300 amplitudes during a visual novelty oddball task. Although no effects of stimulation were found over the whole cluster and time window of the P300, cluster-based permutation tests revealed a distinct impact of taVNS on the P300 response for a small electrode cluster, characterized by larger amplitudes observed for easy targets (i.e., stimuli that are easily discernible from standards) following taVNS compared to sham stimulation. Notably, our findings suggested that the type of stimulation significantly modulated taVNS effects on the P300, with continuous stimulation showing larger P300 differences (taVNS vs. sham) for hard targets and standards compared to interval stimulation. We observed no interaction effects of stimulation duration on the target-related P300. While our findings align with previous research, further investigation is warranted to fully elucidate the influence of taVNS on the P300 component and its potential utility as a reliable marker for neuromodulation in this field.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Campus Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany; (C.V.-B.); (M.W.)
| | | | | |
Collapse
|
7
|
Teckentrup V, Kroemer NB. Mechanisms for survival: vagal control of goal-directed behavior. Trends Cogn Sci 2024; 28:237-251. [PMID: 38036309 DOI: 10.1016/j.tics.2023.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Survival is a fundamental physiological drive, and neural circuits have evolved to prioritize actions that meet the energy demands of the body. This fine-tuning of goal-directed actions based on metabolic states ('allostasis') is deeply rooted in our brain, and hindbrain nuclei orchestrate the vital communication between the brain and body through the vagus nerve. Despite mounting evidence for vagal control of allostatic behavior in animals, its broader function in humans is still contested. Based on stimulation studies, we propose that the vagal afferent pathway supports transitions between survival modes by gating the integration of ascending bodily signals, thereby regulating reward-seeking. By reconceptualizing vagal signals as catalysts for goal-directed behavior, our perspective opens new avenues for theory-driven translational work in mental disorders.
Collapse
Affiliation(s)
- Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, 53127 Bonn, Germany; German Center for Mental Health (DZPG), 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Ventura‐Bort C, Weymar M. Transcutaneous auricular vagus nerve stimulation modulates the processing of interoceptive prediction error signals and their role in allostatic regulation. Hum Brain Mapp 2024; 45:e26613. [PMID: 38379451 PMCID: PMC10879907 DOI: 10.1002/hbm.26613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
It has recently been suggested that predictive processing principles may apply to interoception, defined as the processing of hormonal, autonomic, visceral, and immunological signals. In the current study, we aimed at providing empirical evidence for the role of cardiac interoceptive prediction errors signals on allostatic adjustments, using transcutaneous auricular vagus nerve stimulation (taVNS) as a tool to modulate the processing of interoceptive afferents. In a within-subject design, participants performed a cardiac-related interoceptive task (heartbeat counting task) under taVNS and sham stimulation, spaced 1-week apart. We observed that taVNS, in contrast to sham stimulation, facilitated the maintenance of interoceptive accuracy levels over time (from the initial, stimulation-free, baseline block to subsequent stimulation blocks), suggesting that vagus nerve stimulation may have helped to maintain engagement to cardiac afferent signals. During the interoceptive task, taVNS compared to sham, produced higher heart-evoked potentials (HEP) amplitudes, a potential readout measure of cardiac-related prediction error processing. Further analyses revealed that the positive relation between interoceptive accuracy and allostatic adjustments-as measured by heart rate variability (HRV)-was mediated by HEP amplitudes. Providing initial support for predictive processing accounts of interoception, our results suggest that the stimulation of the vagus nerve may increase the precision with which interoceptive signals are processed, favoring their influence on allostatic adjustments.
Collapse
Affiliation(s)
- Carlos Ventura‐Bort
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
- Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| |
Collapse
|
9
|
Stocker JE, Koppe G, Reich H, Heshmati S, Kittel-Schneider S, Hofmann SG, Hahn T, van der Maas HLJ, Waldorp L, Jamalabadi H. Formalizing psychological interventions through network control theory. Sci Rep 2023; 13:13830. [PMID: 37620407 PMCID: PMC10449779 DOI: 10.1038/s41598-023-40648-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Despite the growing deployment of network representation to comprehend psychological phenomena, the question of whether and how networks can effectively describe the effects of psychological interventions remains elusive. Network control theory, the engineering study of networked interventions, has recently emerged as a viable methodology to characterize and guide interventions. However, there is a scarcity of empirical studies testing the extent to which it can be useful within a psychological context. In this paper, we investigate a representative psychological intervention experiment, use network control theory to model the intervention and predict its effect. Using this data, we showed that: (1) the observed psychological effect, in terms of sensitivity and specificity, relates to the regional network control theoretic metrics (average and modal controllability), (2) the size of change following intervention negatively correlates with a whole-network topology that quantifies the "ease" of change as described by control theory (control energy), and (3) responses after intervention can be predicted based on formal results from control theory. These insights assert that network control theory has significant potential as a tool for investigating psychological interventions. Drawing on this specific example and the overarching framework of network control theory, we further elaborate on the conceptualization of psychological interventions, methodological considerations, and future directions in this burgeoning field.
Collapse
Affiliation(s)
- Julia Elina Stocker
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Rudolf-Bultmann-Straße 8, 35039, Marburg, Germany
| | - Georgia Koppe
- Department of Theoretical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, Central Institute of Mental Health, Heidelberg University, Mannheim, Heidelberg, Germany
| | - Hanna Reich
- German Depression Foundation, Leipzig, Germany
- Depression Research Center of the German Depression Foundation, Department for Psychiatry, Psychosomatics and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Saeideh Heshmati
- Department of Psychology, Claremont Graduate University, Claremont, CA, USA
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Würzburg, Germany
- National Center of Affective Disorders, Würzburg, Germany
- Department of Psychiatry, University College of Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Irland
| | - Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Han L J van der Maas
- Psychological Methods Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Lourens Waldorp
- Psychological Methods Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Rudolf-Bultmann-Straße 8, 35039, Marburg, Germany.
- National Center of Affective Disorders, Marburg, Germany.
| |
Collapse
|
10
|
Giraudier M, Ventura-Bort C, Burger AM, Claes N, D'Agostini M, Fischer R, Franssen M, Kaess M, Koenig J, Liepelt R, Nieuwenhuis S, Sommer A, Usichenko T, Van Diest I, von Leupoldt A, Warren CM, Weymar M. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis. Brain Stimul 2022; 15:1378-1388. [PMID: 36183953 DOI: 10.1016/j.brs.2022.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | | | - Nathalie Claes
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | | | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Roman Liepelt
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Netherlands
| | - Aldo Sommer
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany; Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine of Greifswald, Greifswald, Germany; Department of Anesthesia, McMaster University, Hamilton, Canada
| | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Christopher M Warren
- Emma Eccles Jones College of Education and Human Services, Utah State University, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
11
|
Kroemer NB, Opel N, Teckentrup V, Li M, Grotegerd D, Meinert S, Lemke H, Kircher T, Nenadić I, Krug A, Jansen A, Sommer J, Steinsträter O, Small DM, Dannlowski U, Walter M. Functional Connectivity of the Nucleus Accumbens and Changes in Appetite in Patients With Depression. JAMA Psychiatry 2022; 79:993-1003. [PMID: 36001327 PMCID: PMC9403857 DOI: 10.1001/jamapsychiatry.2022.2464] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022]
Abstract
Importance Major depressive disorder (MDD) is characterized by a substantial burden on health, including changes in appetite and body weight. Heterogeneity of depressive symptoms has hampered the identification of biomarkers that robustly generalize to most patients, thus calling for symptom-based mapping. Objective To define the functional architecture of the reward circuit subserving increases vs decreases in appetite and body weight in patients with MDD by specifying their contributions and influence on disease biomarkers using resting-state functional connectivity (FC). Design, Setting, and Participants In this case-control study, functional magnetic resonance imaging (fMRI) data were taken from the Marburg-Münster FOR 2107 Affective Disorder Cohort Study (MACS), collected between September 2014 and November 2016. Cross-sectional data of patients with MDD (n = 407) and healthy control participants (n = 400) were analyzed from March 2018 to June 2022. Main Outcomes and Measures Changes in appetite during the depressive episode and their association with FC were examined using fMRI. By taking the nucleus accumbens (NAcc) as seed of the reward circuit, associations with opposing changes in appetite were mapped, and a sparse symptom-specific elastic-net model was built with 10-fold cross-validation. Results Among 407 patients with MDD, 249 (61.2%) were women, and the mean (SD) age was 36.79 (13.4) years. Reduced NAcc-based FC to the ventromedial prefrontal cortex (vmPFC) and the hippocampus was associated with reduced appetite (vmPFC: bootstrap r = 0.13; 95% CI, 0.02-0.23; hippocampus: bootstrap r = 0.15; 95% CI, 0.05-0.26). In contrast, reduced NAcc-based FC to the insular ingestive cortex was associated with increased appetite (bootstrap r = -0.14; 95% CI, -0.24 to -0.04). Critically, the cross-validated elastic-net model reflected changes in appetite based on NAcc FC and explained variance increased with increasing symptom severity (all patients: bootstrap r = 0.24; 95% CI, 0.16-0.31; patients with Beck Depression Inventory score of 28 or greater: bootstrap r = 0.42; 95% CI, 0.25-0.58). In contrast, NAcc FC did not classify diagnosis (MDD vs healthy control). Conclusions and Relevance In this study, NAcc-based FC reflected important individual differences in appetite and body weight in patients with depression that can be leveraged for personalized prediction. However, classification of diagnosis using NAcc-based FC did not exceed chance levels. Such symptom-specific associations emphasize the need to map biomarkers onto more confined facets of psychopathology to improve the classification and treatment of MDD.
Collapse
Affiliation(s)
- Nils B. Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Jens Sommer
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Dana M. Small
- Departments of Psychiatry and Psychology, Yale University, New Haven, Connecticut
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
12
|
Vagus nerve stimulation increases stomach-brain coupling via a vagal afferent pathway. Brain Stimul 2022; 15:1279-1289. [PMID: 36067977 DOI: 10.1016/j.brs.2022.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Maintaining energy homeostasis is vital and supported by vagal signaling between digestive organs and the brain. Previous research has established a gastric network in the brain that is phase synchronized with the rhythm of the stomach, but tools to perturb its function were lacking. OBJECTIVE To evaluate whether stomach-brain coupling can be acutely increased by non-invasively stimulating vagal afferent projections to the brain. METHODS Using a single-blind randomized crossover design, we investigated the effect of acute right-sided transcutaneous auricular vagus nerve stimulation (taVNS) versus sham stimulation on stomach-brain coupling. RESULTS In line with preclinical research, taVNS increased stomach-brain coupling in the nucleus of the solitary tract (NTS) and the midbrain while boosting coupling across the brain. Crucially, in the cortex, taVNS-induced changes in coupling occurred primarily in transmodal regions and were associated with changes in hunger ratings as indicators of the subjective metabolic state. CONCLUSIONS taVNS increases stomach-brain coupling via an NTS-midbrain pathway that signals gut-induced reward, indicating that communication between the brain and the body is effectively modulated by vago-vagal signaling. Such insights may help us better understand the role of vagal afferents in orchestrating the recruitment of the gastric network which could pave the way for novel neuromodulatory treatments.
Collapse
|
13
|
Edwin Thanarajah S, Reif A. A pacemaker for happiness - Transcutaneous vagus nerve stimulation in depression. Eur Neuropsychopharmacol 2022; 61:1-3. [PMID: 35667283 DOI: 10.1016/j.euroneuro.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Sharmili Edwin Thanarajah
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany.
| | - Andreas Reif
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| |
Collapse
|