Fukuda Y, Uehara K. Frontal midline theta power accounts for inter-individual differences in motor learning ability.
Exp Brain Res 2025;
243:147. [PMID:
40372531 DOI:
10.1007/s00221-025-07096-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/26/2025] [Indexed: 05/16/2025]
Abstract
Recent neurophysiological studies have demonstrated that frontal midline theta (FMT) activity plays a significant role in motor learning. One of the key challenges in motor learning is to understand the interindividual variability in learning proficiency rates, yet the underlying neural mechanisms remain unclear. To address this open question, this study recorded electroencephalogram activity from twenty-one healthy participants during a visuomotor tracking task to investigate whether modulation of FMT power and the theta phase synchronization across trials (theta phase consistency) during motor preparation could explain individual differences in learning proficiency. We found a significant positive correlation between increased FMT power during motor preparation and learning proficiency rates. Specifically, individuals with greater FMT power exhibited faster learning rates. In contrast, no significant correlation was observed between the consistency of the theta phase during motor preparation and learning proficiency. Together, these findings highlight that the FMT power, rather than phase synchrony, is closely associated with motor learning efficiency. This study provides a novel perspective for understanding the causes of individual differences in motor learning and further corroborates the previous evidence showing FMT power contributes to motor learning processes.
Collapse