1
|
Jiang Y, Li G, Shao X, Guo H. Simultaneous multislice diffusion imaging using navigator-free multishot spiral acquisitions. Magn Reson Med 2025; 94:73-88. [PMID: 39825518 DOI: 10.1002/mrm.30427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE This work aims to raise a novel design for navigator-free multiband (MB) multishot uniform-density spiral (UDS) acquisition and reconstruction, and to demonstrate its utility for high-efficiency, high-resolution diffusion imaging. THEORY AND METHODS Our design focuses on the acquisition and reconstruction of navigator-free MB multishot UDS diffusion imaging. For acquisition, radiofrequency-pulse encoding was used to achieve controlled aliasing in parallel imaging in MB imaging. For reconstruction, a new algorithm named slice-projection onto convex sets-enhanced inherent correction of phase errors (slice-POCS-ICE) was proposed to simultaneously estimate diffusion-weighted images and intershot phase variations for each slice. The efficacy of the proposed methods was evaluated in both numerical simulation and in vivo experiments. RESULTS In both numerical simulation and in vivo experiments, slice-POCS-ICE estimated phase variations more precisely and provided results with better image quality than other methods. The intershot phase variations and MB slice aliasing artifacts were simultaneously resolved using the proposed slice-POCS-ICE algorithm. CONCLUSION The proposed navigator-free MB multishot UDS acquisition and reconstruction method is an effective solution for high-efficiency, high-resolution diffusion imaging.
Collapse
Affiliation(s)
- Yuancheng Jiang
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guangqi Li
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Adamic EM, Teed AR, Avery J, de la Cruz F, Khalsa S. Hemispheric divergence of interoceptive processing across psychiatric disorders. eLife 2024; 13:RP92820. [PMID: 39535878 PMCID: PMC11560129 DOI: 10.7554/elife.92820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a 'locus of disruption' for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain ResearchTulsaUnited States
- Department of Biological Sciences, University of TulsaTulsaUnited States
| | - Adam R Teed
- Laureate Institute for Brain ResearchTulsaUnited States
| | - Jason Avery
- Laboratory of Brain and Cognition, National Institute of Mental HealthBethesdaUnited States
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University HospitalJenaGermany
| | - Sahib Khalsa
- Laureate Institute for Brain ResearchTulsaUnited States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp 2024; 8:73. [PMID: 38945979 PMCID: PMC11214939 DOI: 10.1186/s41747-024-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healtcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Iyyappan Valsala P, Veldmann M, Bosch D, Scheffler K, Ehses P. Submillimeter balanced SSFP BOLD-functional MRI accelerated with 3D stack-of-spirals at 9.4 T. Magn Reson Med 2024; 92:186-201. [PMID: 38440956 DOI: 10.1002/mrm.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE This work aims to improve the speed of balanced SSFP (bSSFP) acquisition with segmented 3D stack-of-spirals for functional brain studies at ultrahigh field. METHODS Functional experiments were performed with an accelerated 3D stack-of-spirals sequence with water excitation for fat suppression. The resulting data were reconstructed using an iterative algorithm with corrections for system imperfections such as trajectory deviations and B0 inhomogeneity. In the first set of experiments, we evaluated the signal change and stability with respect to echo and TR for a full-field checkerboard stimulus. To demonstrate the high spatio-temporal resolution of the developed method, the results of three optimized protocols at submillimeter resolution (0.6-mm isotropic and 0.8-mm isotropic) and at 1.2 mm isotropic resolution for whole-brain coverage were shown. RESULTS Water excitation and the model-based iterative reconstruction improved image quality. The BOLD-related signal changes increased with longer TE and longer TR. We observed an increase in thermal noise performance at lower TE and higher TR. However, signal stability deteriorates at higher TE and TR. Therefore, optimized protocols used shorter TE and moderately long TR to maximize the sensitivity and speed. Reproducible activations were detected along the gray-matter gyri in the submillimeter protocols with a median signal change of approximately 4% across subjects. CONCLUSIONS Three-dimensional stack-of-spirals enables passband balanced SSFP functional imaging at a much higher spatial and temporal scale, compared with conventional spoiled gradient-echo train sequences.
Collapse
Affiliation(s)
| | - Marten Veldmann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dario Bosch
- Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
5
|
Adamic EM, Teed AR, Avery JA, de la Cruz F, Khalsa SS. Hemispheric divergence of interoceptive processing across psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570759. [PMID: 38105986 PMCID: PMC10723463 DOI: 10.1101/2023.12.08.570759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals, whereas during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e., when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Further, the dysgranular mid-insula may indeed be a "locus of disruption" for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Department of Biological Sciences, University of Tulsa, Tulsa, OK, USA, 74104
| | - Adam R Teed
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
| | - Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA, 20814
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Thuringia, Germany, 07743
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA, 74119
| |
Collapse
|
6
|
Amor Z, Ciuciu P, G R C, Daval-Frérot G, Mauconduit F, Thirion B, Vignaud A. Non-Cartesian 3D-SPARKLING vs Cartesian 3D-EPI encoding schemes for functional Magnetic Resonance Imaging at 7 Tesla. PLoS One 2024; 19:e0299925. [PMID: 38739571 PMCID: PMC11090341 DOI: 10.1371/journal.pone.0299925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/16/2024] [Indexed: 05/16/2024] Open
Abstract
The quest for higher spatial and/or temporal resolution in functional MRI (fMRI) while preserving a sufficient temporal signal-to-noise ratio (tSNR) has generated a tremendous amount of methodological contributions in the last decade ranging from Cartesian vs. non-Cartesian readouts, 2D vs. 3D acquisition strategies, parallel imaging and/or compressed sensing (CS) accelerations and simultaneous multi-slice acquisitions to cite a few. In this paper, we investigate the use of a finely tuned version of 3D-SPARKLING. This is a non-Cartesian CS-based acquisition technique for high spatial resolution whole-brain fMRI. We compare it to state-of-the-art Cartesian 3D-EPI during both a retinotopic mapping paradigm and resting-state acquisitions at 1mm3 (isotropic spatial resolution). This study involves six healthy volunteers and both acquisition sequences were run on each individual in a randomly-balanced order across subjects. The performances of both acquisition techniques are compared to each other in regards to tSNR, sensitivity to the BOLD effect and spatial specificity. Our findings reveal that 3D-SPARKLING has a higher tSNR than 3D-EPI, an improved sensitivity to detect the BOLD contrast in the gray matter, and an improved spatial specificity. Compared to 3D-EPI, 3D-SPARKLING yields, on average, 7% more activated voxels in the gray matter relative to the total number of activated voxels.
Collapse
Affiliation(s)
- Zaineb Amor
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Ciuciu
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND team, Université Paris-Saclay, Palaiseau, France
| | - Chaithya G R
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND team, Université Paris-Saclay, Palaiseau, France
| | - Guillaume Daval-Frérot
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND team, Université Paris-Saclay, Palaiseau, France
- Siemens Heathineers, Courbevoie, France
| | - Franck Mauconduit
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bertrand Thirion
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND team, Université Paris-Saclay, Palaiseau, France
| | - Alexandre Vignaud
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Amor Z, Le Ster C, Gr C, Daval-Frérot G, Boulant N, Mauconduit F, Thirion B, Ciuciu P, Vignaud A. Impact of B 0 $$ {\mathrm{B}}_0 $$ field imperfections correction on BOLD sensitivity in 3D-SPARKLING fMRI data. Magn Reson Med 2024; 91:1434-1448. [PMID: 38156952 DOI: 10.1002/mrm.29943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Static and dynamicB 0 $$ {\mathrm{B}}_0 $$ field imperfections are detrimental to functional MRI (fMRI) applications, especially at ultra-high magnetic fields (UHF). In this work, a field camera is used to assess the benefits of retrospectively correctingB 0 $$ {\mathrm{B}}_0 $$ field perturbations on Blood Oxygen Level Dependent (BOLD) sensitivity in non-Cartesian three-dimensional (3D)-SPARKLING fMRI acquisitions. METHODS fMRI data were acquired at 1 mm3 $$ {}^3 $$ and for a 2.4s-TR while concurrently monitoring in real-time field perturbations using a Skope Clip-on field camera in a novel experimental setting involving a shorter TR than the required minimal TR of the field probes. Measurements of the dynamic field deviations were used along with a staticΔ B 0 $$ \Delta {\mathrm{B}}_0 $$ map to retrospectively correct static and dynamic field imperfections, respectively. In order to evaluate the impact of such a correction on fMRI volumes, a comparative study was conducted on healthy volunteers. RESULTS Correction ofB 0 $$ {\mathrm{B}}_0 $$ deviations improved image quality and yielded between 20% and 30% increase in median temporal signal-to-noise ratio (tSNR).Using fMRI data collected during a retinotopic mapping experiment, we demonstrated a significant increase in sensitivity to the BOLD contrast and improved accuracy of the BOLD phase maps: 44% (resp., 159%) more activated voxels were retrieved when using a significance control level based on a p-value of 0.001 without correcting for multiple comparisons (resp., 0.05 with a false discovery rate correction). CONCLUSION 3D-SPARKLING fMRI hugely benefits from static and dynamicB 0 $$ {\mathrm{B}}_0 $$ imperfections correction. However, the proposed experimental protocol is flexible enough to be deployed on a large spectrum of encoding schemes, including arbitrary non-Cartesian readouts.
Collapse
Affiliation(s)
- Zaineb Amor
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Caroline Le Ster
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chaithya Gr
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND, Palaiseau, France
| | - Guillaume Daval-Frérot
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND, Palaiseau, France
- Siemens Healthineers, Courbevoie, France
| | - Nicolas Boulant
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Mauconduit
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bertrand Thirion
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND, Palaiseau, France
| | - Philippe Ciuciu
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, MIND, Palaiseau, France
| | - Alexandre Vignaud
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Yun SD, Küppers F, Shah NJ. Submillimeter fMRI Acquisition Techniques for Detection of Laminar and Columnar Level Brain Activation. J Magn Reson Imaging 2024; 59:747-766. [PMID: 37589385 DOI: 10.1002/jmri.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Since the first demonstration in the early 1990s, functional MRI (fMRI) has emerged as one of the most powerful, noninvasive neuroimaging tools to probe brain functions. Subsequently, fMRI techniques have advanced remarkably, enabling the acquisition of functional signals with a submillimeter voxel size. This innovation has opened the possibility of investigating subcortical neural activities with respect to the cortical depths or cortical columns. For this purpose, numerous previous works have endeavored to design suitable functional contrast mechanisms and dedicated imaging techniques. Depending on the choice of the functional contrast, functional signals can be detected with high sensitivity or with improved spatial specificity to the actual activation site, and the pertaining issues have been discussed in a number of earlier works. This review paper primarily aims to provide an overview of the subcortical fMRI techniques that allow the acquisition of functional signals with a submillimeter resolution. Here, the advantages and disadvantages of the imaging techniques will be described and compared. We also summarize supplementary imaging techniques that assist in the analysis of the subcortical brain activation for more accurate mapping with reduced geometric deformation. This review suggests that there is no single universally accepted method as the gold standard for subcortical fMRI. Instead, the functional contrast and the corresponding readout imaging technique should be carefully determined depending on the purpose of the study. Due to the technical limitations of current fMRI techniques, most subcortical fMRI studies have only targeted partial brain regions. As a future prospect, the spatiotemporal resolution of fMRI will be pushed to satisfy the community's need for a deeper understanding of whole-brain functions and the underlying connectivity in order to achieve the ultimate goal of a time-resolved and layer-specific spatial scale. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Seong Dae Yun
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Fabian Küppers
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Foster SL, Breukelaar IA, Ekanayake K, Lewis S, Korgaonkar MS. Functional Magnetic Resonance Imaging of the Amygdala and Subregions at 3 Tesla: A Scoping Review. J Magn Reson Imaging 2024; 59:361-375. [PMID: 37352130 DOI: 10.1002/jmri.28836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/25/2023] Open
Abstract
The amygdalae are a pair of small brain structures, each of which is composed of three main subregions and whose function is implicated in neuropsychiatric conditions. Functional Magnetic Resonance Imaging (fMRI) has been utilized extensively in investigation of amygdala activation and functional connectivity (FC) with most clinical research sites now utilizing 3 Tesla (3T) MR systems. However, accurate imaging and analysis remains challenging not just due to the small size of the amygdala, but also its location deep in the temporal lobe. Selection of imaging parameters can significantly impact data quality with implications for the accuracy of study results and validity of conclusions. Wide variation exists in acquisition protocols with spatial resolution of some protocols suboptimal for accurate assessment of the amygdala as a whole, and for measuring activation and FC of the three main subregions, each of which contains multiple nuclei with specialized roles. The primary objective of this scoping review is to provide a broad overview of 3T fMRI protocols in use to image the activation and FC of the amygdala with particular reference to spatial resolution. The secondary objective is to provide context for a discussion culminating in recommendations for a standardized protocol for imaging activation of the amygdala and its subregions. As the advantages of big data and protocol harmonization in imaging become more apparent so, too, do the disadvantages of data heterogeneity. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sheryl L Foster
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Isabella A Breukelaar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kanchana Ekanayake
- University Library, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Lewis
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
10
|
Franceschiello B, Rumac S, Hilbert T, Nau M, Dziadosz M, Degano G, Roy CW, Gaglianese A, Petri G, Yerly J, Stuber M, Kober T, van Heeswijk RB, Murray MM, Fornari E. Hi-Fi fMRI: High-resolution, fast-sampled and sub-second whole-brain functional MRI at 3T in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540663. [PMID: 37425913 PMCID: PMC10327135 DOI: 10.1101/2023.05.13.540663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a methodological cornerstone of neuroscience. Most studies measure blood-oxygen-level-dependent (BOLD) signal using echo-planar imaging (EPI), Cartesian sampling, and image reconstruction with a one-to-one correspondence between the number of acquired volumes and reconstructed images. However, EPI schemes are subject to trade-offs between spatial and temporal resolutions. We overcome these limitations by measuring BOLD with a gradient recalled echo (GRE) with 3D radial-spiral phyllotaxis trajectory at a high sampling rate (28.24ms) on standard 3T field-strength. The framework enables the reconstruction of 3D signal time courses with whole-brain coverage at simultaneously higher spatial (1mm 3 ) and temporal (up to 250ms) resolutions, as compared to optimized EPI schemes. Additionally, artifacts are corrected before image reconstruction; the desired temporal resolution is chosen after scanning and without assumptions on the shape of the hemodynamic response. By showing activation in the calcarine sulcus of 20 participants performing an ON-OFF visual paradigm, we demonstrate the reliability of our method for cognitive neuroscience research.
Collapse
|
11
|
Haskell MW, Nielsen JF, Noll DC. Off-resonance artifact correction for MRI: A review. NMR IN BIOMEDICINE 2023; 36:e4867. [PMID: 36326709 PMCID: PMC10284460 DOI: 10.1002/nbm.4867] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/25/2022] [Accepted: 11/01/2022] [Indexed: 06/06/2023]
Abstract
In magnetic resonance imaging (MRI), inhomogeneity in the main magnetic field used for imaging, referred to as off-resonance, can lead to image artifacts ranging from mild to severe depending on the application. Off-resonance artifacts, such as signal loss, geometric distortions, and blurring, can compromise the clinical and scientific utility of MR images. In this review, we describe sources of off-resonance in MRI, how off-resonance affects images, and strategies to prevent and correct for off-resonance. Given recent advances and the great potential of low-field and/or portable MRI, we also highlight the advantages and challenges of imaging at low field with respect to off-resonance.
Collapse
Affiliation(s)
- Melissa W Haskell
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
- Hyperfine Research, Guilford, Connecticut, USA
| | | | - Douglas C Noll
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Li G, Ma X, Li S, Ye X, Börnert P, Zhou XJ, Guo H. Comparison of uniform-density, variable-density, and dual-density spiral samplings for multi-shot DWI. Magn Reson Med 2023; 90:133-149. [PMID: 36883748 DOI: 10.1002/mrm.29633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE To compare the performances of uniform-density spiral (UDS), variable-density spiral (VDS), and dual-density spiral (DDS) samplings in multi-shot diffusion imaging, and determine a sampling strategy that balances reliability of shot navigator and overall DWI image quality. THEORY AND METHODS UDS, VDS, and DDS trajectories were implemented to achieve four-shot diffusion-weighted spiral imaging. First, the static B0 off-resonance effects in UDS, VDS, and DDS acquisitions were analyzed based on a signal model. Then, in vivo experiments were performed to verify the theoretical analyses, and fractional anisotropy (FA) fitting residuals were used to quantitatively assess the quality of spiral diffusion data for tensor estimation. Finally, the SNR performances and g-factor behavior of the three spiral samplings were evaluated using a Monte Carlo-based pseudo multiple replica method. RESULTS Among the three spiral trajectories with the same readout duration, UDS sampling exhibited the least off-resonance artifacts. This was most evident when the static B0 off-resonance effect was severe. The UDS diffusion images had higher anatomical fidelity and lower FA fitting residuals than the other two counterparts. Furthermore, the four-shot UDS acquisition achieved the best SNR performance in diffusion imaging with 12.11% and 40.85% improvements over the VDS and DDS acquisitions with the same readout duration, respectively. CONCLUSION UDS sampling is an efficient spiral acquisition scheme for high-resolution diffusion imaging with reliable navigator information. It provides superior off-resonance performance and SNR efficiency over the VDS and DDS samplings for the tested scenarios.
Collapse
Affiliation(s)
- Guangqi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sisi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Xinyu Ye
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Peter Börnert
- Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, The Netherlands.,Philips Research, Hamburg, Germany
| | - Xiaohong Joe Zhou
- Center for MR Research and Departments of Radiology, Neurosurgery, and Biomedical Engineering, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Graedel NN, Miller KL, Chiew M. Ultrahigh Resolution fMRI at 7T Using Radial-Cartesian TURBINE Sampling. Magn Reson Med 2022; 88:2058-2073. [PMID: 35785429 PMCID: PMC9546489 DOI: 10.1002/mrm.29359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022]
Abstract
Purpose We investigate the use of TURBINE, a 3D radial‐Cartesian acquisition scheme in which EPI planes are rotated about the phase‐encoding axis to acquire a cylindrical k‐space for high‐fidelity ultrahigh isotropic resolution fMRI at 7 Tesla with minimal distortion and blurring. Methods An improved, completely self‐navigated version of the TURBINE sampling scheme was designed for fMRI at 7 Telsa. To demonstrate the image quality and spatial specificity of the acquisition, thin‐slab visual and motor BOLD fMRI at 0.67 mm isotropic resolution (16 mm slab, TRvol = 2.32 s), and 0.8 × 0.8 × 2.0 mm (whole‐brain, TRvol = 2.4 s) data were acquired. To prioritize the high spatial fidelity, we employed a temporally regularized reconstruction to improve sensitivity without any spatial bias. Results TURBINE images provide high structural fidelity with almost no distortion, dropout, or T2* blurring for the thin‐slab acquisitions compared to conventional 3D EPI owing to the radial sampling in‐plane and the short echo train used. This results in activation that can be localized to pre‐ and postcentral gyri in a motor task, for example, with excellent correspondence to brain structure measured by a T1‐MPRAGE. The benefits of TURBINE (low distortion, dropout, blurring) are reduced for the whole‐brain acquisition due to the longer EPI train. We demonstrate robust BOLD activation at 0.67 mm isotropic resolution (thin‐slab) and also anisotropic 0.8 × 0.8 × 2.0 mm (whole‐brain) acquisitions. Conclusion TURBINE is a promising acquisition approach for high‐resolution, minimally distorted fMRI at 7 Tesla and could be particularly useful for fMRI in areas of high B0 inhomogeneity. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Nadine N Graedel
- Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Kasper L, Engel M, Heinzle J, Mueller-Schrader M, Graedel NN, Reber J, Schmid T, Barmet C, Wilm BJ, Stephan KE, Pruessmann KP. Advances in spiral fMRI: A high-resolution dataset. Data Brief 2022; 42:108050. [PMID: 35372651 PMCID: PMC8968017 DOI: 10.1016/j.dib.2022.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/25/2022] Open
Abstract
We present data collected for the research article "Advances in Spiral fMRI: A High-resolution Study with Single-shot Acquisition" (Kasper et al. 2022). All data was acquired on a 7T ultra-high field MR system (Philips Achieva), equipped with a concurrent magnetic field monitoring setup based on 16 NMR probes. For task-based fMRI, a visual quarterfield stimulation paradigm was employed, alongside physiological monitoring via peripheral recordings. This data collection contains different datasets pertaining to different purposes: (1) Measured magnetic field dynamics (k0, spiral k-space trajectories, 2nd order spherical harmonics, concomitant fields) during ultra-high field fMRI sessions from six subjects, as well as concurrent temperature curves of the gradient coil, to explore MR system and subject-induced variability of field fluctuations and assess the impact of potential correction methods. (2) MR Raw Data, i.e., coil and concurrent encoding magnetic field (trajectory) data, of a single subject, as well as nominal spiral gradient waveforms, precomputed B0 and coil sensitivity maps, to enable testing of alternative image reconstruction approaches for spiral fMRI data. (3) Reconstructed image time series of the same subject alongside behavioral and physiological logfiles, to reproduce the fMRI preprocessing and analysis, as well as figures presented in the research article related to this article, using the published analysis code repository. All data is provided in standardized formats for the respective research area. In particular, ISMRMRD (HDF5) is used to store raw coil data and spiral trajectories, as well as measured field dynamics. Likewise, the NIfTI format is used for all imaging data (anatomical MRI and spiral fMRI, B0 and coil sensitivity maps).
Collapse
Affiliation(s)
- Lars Kasper
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wilfriedstrasse 6, Zurich 8032 Switzerland
| | - Maria Engel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wilfriedstrasse 6, Zurich 8032 Switzerland
| | - Matthias Mueller-Schrader
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wilfriedstrasse 6, Zurich 8032 Switzerland
| | - Nadine N. Graedel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jonas Reber
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Thomas Schmid
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Christoph Barmet
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Bertram J. Wilm
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wilfriedstrasse 6, Zurich 8032 Switzerland
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, United Kingdom
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| |
Collapse
|