1
|
Chen C, Xiong B, Tan W, Tian Y, Zhang S, Wu J, Song P, Qin S. Setting the tone for the day: Cortisol awakening response proactively modulates fronto-limbic circuitry for emotion processing. Neuroimage 2025; 315:121251. [PMID: 40345506 DOI: 10.1016/j.neuroimage.2025.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 04/04/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
The cortisol awakening response (CAR) has been linked to a variety of emotion-related psychiatric conditions and is proposed to prepare the brain for upcoming stress and challenges. Yet, the underlying neurobiological mechanisms of such proactive effects on emotional processing remain elusive. In the current double-blinded, pharmacologically-manipulated study, 36 male adults (DXM group) received cortisol-repressive dexamethasone on the previous night, then performed the Emotional Face Matching Task (EFMT) during fMRI scanning the next afternoon. Relative to the placebo group (31 male adults), the DXM group exhibited lower accuracy in the emotion matching condition, but not in the sensorimotor control condition. Psychophysiological interaction (PPI) analyses revealed significant task-by-group interaction involving the right and left amygdala, but not the medial orbitofrontal cortex (MOFC) or hippocampus. Specifically, the DXM group exhibited stronger functional connectivity between the right amygdala and left dorsolateral prefrontal cortex (lDLPFC) during emotion condition but reduced connectivity in the same network during control condition, as compared to the placebo group. Meanwhile, the DXM group exhibited weaker left amygdala-right posterior middle temporal gyrus (rMTG) connectivity than the placebo group during control condition, but there was no group effect in the connectivity during emotion condition. These results indicate that the CAR proactively modulates fronto-limbic functional organization for emotion processing in male adults. Our findings support a causal link between CAR and its proactive effects on emotional processing, and suggest a model of CAR-mediated brain preparedness where CAR sets a tonic tone for the upcoming day to actively regulate neuroendocrinological responses to emotionally charged stimuli on a moment-to-moment basis.
Collapse
Affiliation(s)
- Changming Chen
- School of Educational Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bingsen Xiong
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Wenlong Tan
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yanqiu Tian
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Shouwen Zhang
- Neuroelectrophysiology Department, Beijing DaWangLu Emergency Hospital, Beijing, 100122, China.
| | - Jianhui Wu
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China
| | - Peng Song
- Department of Medical Oncology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shaozheng Qin
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning & International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing, 100069, China.
| |
Collapse
|
2
|
Leonards CA, Harrison BJ, Jamieson AJ, Agathos J, Steward T, Davey CG. Altered task-related decoupling of the rostral anterior cingulate cortex in depression. Neuroimage Clin 2024; 41:103564. [PMID: 38218081 PMCID: PMC10821626 DOI: 10.1016/j.nicl.2024.103564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Dysfunctional activity of the rostral anterior cingulate cortex (rACC) - an extensively connected hub region of the default mode network - has been broadly linked to cognitive and affective impairments in depression. However, the nature of aberrant task-related rACC suppression in depression is incompletely understood. In this study, we sought to characterize functional connectivity of rACC activity suppression ('deactivation') - an essential feature of rACC function - during external task engagement in depression. Specifically, we aimed to explore neural patterns of functional decoupling and coupling with the rACC during its task-driven suppression. We enrolled 81 15- to 25-year-old young people with moderate-to-severe major depressive disorder (MDD) before they commenced a 12-week clinical trial that assessed the effectiveness of cognitive behavioral therapy plus either fluoxetine or placebo. Ninety-four matched healthy controls were also recruited. Participants completed a functional magnetic resonance imaging face matching task known to elicit rACC suppression. To identify brain regions associated with the rACC during its task-driven suppression, we employed a seed-based functional connectivity analysis. We found MDD participants, compared to controls, showed significantly reduced 'decoupling' of the rACC with extended task-specific regions during task performance. Specifically, less decoupling was observed in the occipital and fusiform gyrus, dorsal ACC, medial prefrontal cortex, cuneus, amygdala, thalamus, and hippocampus. Notably, impaired decoupling was apparent in participants who did not remit to treatment, but not treatment remitters. Further, we found MDD participants showed significant increased coupling with the anterior insula cortex during task engagement. Our findings indicate that aberrant task-related rACC suppression is associated with disruptions in adaptive neural communication and dynamic switching between internal and external cognitive modes that may underpin maladaptive cognitions and biased emotional processing in depression.
Collapse
Affiliation(s)
- Christine A Leonards
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Alec J Jamieson
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - James Agathos
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Trevor Steward
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Erickson WB, Weatherford DR. Measuring the Contributions of Perceptual and Attentional Processes in the Complete Composite Face Paradigm. Vision (Basel) 2023; 7:76. [PMID: 37987296 PMCID: PMC10661262 DOI: 10.3390/vision7040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Theories of holistic face processing vary widely with respect to conceptualizations, paradigms, and stimuli. These divergences have left several theoretical questions unresolved. Namely, the role of attention in face perception is understudied. To rectify this gap in the literature, we combined the complete composite face task (allowing for predictions of multiple theoretical conceptualizations and connecting with a large body of research) with a secondary auditory discrimination task at encoding (to avoid a visual perceptual bottleneck). Participants studied upright, intact faces within a continuous recognition paradigm, which intermixes study and test trials at multiple retention intervals. Within subjects, participants studied faces under full or divided attention. Test faces varied with respect to alignment, congruence, and retention intervals. Overall, we observed the predicted beneficial outcomes of holistic processing (e.g., higher discriminability for Congruent, Aligned faces relative to Congruent, Misaligned faces) that persisted across retention intervals and attention. However, we did not observe the predicted detrimental outcomes of holistic processing (e.g., higher discriminability for Incongruent, Misaligned faces relative to Incongruent, Aligned faces). Because the continuous recognition paradigm exerts particularly strong demands on attention, we interpret these findings through the lens of resource dependency and domain specificity.
Collapse
Affiliation(s)
- William Blake Erickson
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA;
| | | |
Collapse
|