1
|
Wang X, Yan T, Wang L, Wang N, Yang X, Wang X, Cai H, Yuan Z, Ma X, Chen X. Ultra-low-cost and high-fidelity NIR-II confocal laser scanning microscope with Bessel beam excitation and SiPM detection. BIOMEDICAL OPTICS EXPRESS 2024; 15:4786-4794. [PMID: 39346982 PMCID: PMC11427194 DOI: 10.1364/boe.531266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024]
Abstract
Confocal laser scanning microscopy (CLSM) is one of the most important imaging tools in the biomedical field, and near-infrared-II (NIR-II, 900-1700nm) fluorescence imaging technology has also made fruitful research progress in deep imaging in recent years. The NIR-II based CLSM has problems such as an expensive detector and reduced image resolution caused by long wavelength excitation. Here, by simultaneously using a low-cost silicon photomultiplier (SiPM) as a detector and a Bessel beam as an excitation, we developed an ultra-low-cost and high-fidelity NIR-II confocal laser scanning microscope. The use of SiPM reduces the cost of the NIR-II fluorescence detection module in CLSM, while enabling the detection of ultra-broadband fluorescence signals spanning visible to NIR-II regions. The introduction of the Bessel beam compensates to some extent for the weakening of spatial resolution caused by the increase in the wavelength of light in the NIR region. Experimental results show that the use of the Bessel beam can improve the resolution by 12% when observing thin samples. With the increase of sample thickness, the imaging resolution of the Bessel beam at NIR-II wavelengths is better than that of the Gaussian beam at NIR-I wavelengths at the penetrable depth of the NIR-I light. At deeper depths, the imaging resolution and imaging depth of Bessel beam CLSM is superior to Gaussian beam CLSM at the same excitation power.
Collapse
Affiliation(s)
- Xinyu Wang
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Tianyu Yan
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Nan Wang
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaoli Yang
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 150061, China
| | - Xiaodong Wang
- Shaanxi Institute of Medical Device Quality Inspection, Xi’an, Shaanxi 712046, China
| | - Hu Cai
- Shaanxi Institute of Medical Device Quality Inspection, Xi’an, Shaanxi 712046, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 150061, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| |
Collapse
|
2
|
Eichner C, Paquette M, Müller-Axt C, Bock C, Budinger E, Gräßle T, Jäger C, Kirilina E, Lipp I, Morawski M, Rusch H, Wenk P, Weiskopf N, Wittig RM, Crockford C, Friederici AD, Anwander A. Detailed mapping of the complex fiber structure and white matter pathways of the chimpanzee brain. Nat Methods 2024; 21:1122-1130. [PMID: 38831210 PMCID: PMC11166572 DOI: 10.1038/s41592-024-02270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/29/2024] [Indexed: 06/05/2024]
Abstract
Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.
Collapse
Affiliation(s)
- Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Michael Paquette
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christa Müller-Axt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Christian Bock
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Eike Budinger
- Leibniz Institute for Neurobiology, Combinatorial NeuroImaging Core Facility, Magdeburg, Germany
- Center for Behavioural Neurosciences, Magdeburg, Germany
| | - Tobias Gräßle
- Ecology and Emergence of Zoonotic Diseases, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research, Greifswald, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Neuroscience Berlin, Free University Berlin, Berlin, Germany
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Henriette Rusch
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Patricia Wenk
- Leibniz Institute for Neurobiology, Combinatorial NeuroImaging Core Facility, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Roman M Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Tai Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, Lyon, France
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Tai Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, Lyon, France
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
3
|
Yu T, Yang Q, Peng B, Gu Z, Zhu D. Vascularized organoid-on-a-chip: design, imaging, and analysis. Angiogenesis 2024; 27:147-172. [PMID: 38409567 DOI: 10.1007/s10456-024-09905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook for future development.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
4
|
Woelfle S, Deshpande D, Feldengut S, Braak H, Del Tredici K, Roselli F, Deisseroth K, Michaelis J, Boeckers TM, Schön M. CLARITY increases sensitivity and specificity of fluorescence immunostaining in long-term archived human brain tissue. BMC Biol 2023; 21:113. [PMID: 37221592 PMCID: PMC10207789 DOI: 10.1186/s12915-023-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/29/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Post mortem human brain tissue is an essential resource to study cell types, connectivity as well as subcellular structures down to the molecular setup of the central nervous system especially with respect to the plethora of brain diseases. A key method is immunostaining with fluorescent dyes, which allows high-resolution imaging in three dimensions of multiple structures simultaneously. Although there are large collections of formalin-fixed brains, research is often limited because several conditions arise that complicate the use of human brain tissue for high-resolution fluorescence microscopy. RESULTS In this study, we developed a clearing approach for immunofluorescence-based analysis of perfusion- and immersion-fixed post mortem human brain tissue, termed human Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging / Immunostaining / In situ hybridization-compatible Tissue-hYdrogel (hCLARITY). hCLARITY is optimized for specificity by reducing off-target labeling and yields very sensitive stainings in human brain sections allowing for super-resolution microscopy with unprecedented imaging of pre- and postsynaptic compartments. Moreover, hallmarks of Alzheimer's disease were preserved with hCLARITY, and importantly classical 3,3'-diaminobenzidine (DAB) or Nissl stainings are compatible with this protocol. hCLARITY is very versatile as demonstrated by the use of more than 30 well performing antibodies and allows for de- and subsequent re-staining of the same tissue section, which is important for multi-labeling approaches, e.g., in super-resolution microscopy. CONCLUSIONS Taken together, hCLARITY enables research of the human brain with high sensitivity and down to sub-diffraction resolution. It therefore has enormous potential for the investigation of local morphological changes, e.g., in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, IGradU, 89081, Ulm, Germany
| | - Dhruva Deshpande
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Chemical and Systems Biology Department, Stanford School of Medicine, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Simone Feldengut
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Zwang TJ, Woost B, Bailey J, Hoglund Z, Richardson DS, Bennett RE, Hyman BT. Spatial characterization of tangle-bearing neurons and ghost tangles in the human inferior temporal gyrus with three-dimensional imaging. Brain Commun 2023; 5:fcad130. [PMID: 37324243 PMCID: PMC10263274 DOI: 10.1093/braincomms/fcad130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023] Open
Abstract
Studies of post-mortem human tissue provide insight into pathological processes, but are inherently limited by practical considerations that limit the scale at which tissue can be examined, and the obvious issue that the tissue reflects only one time point in a continuous disease process. We approached this problem by adapting new tissue clearance techniques to an entire cortical area of human brain, which allows surveillance of hundreds of thousands of neurons throughout the depth of the entire cortical thickness. This approach allows detection of 'rare' events that may be difficult to detect in standard 5 micrometre-thick paraffin sections. For example, it is well established that neurofibrillary tangles begin within a neuron, and ultimately, in at least some instances, persist in the brain even after the neuron has died. These are referred to as 'ghost tangles', a term that appropriately implies their 'difficult to see' ephemeral qualities. We set out to find ghost tangles as one example of the power of the tissue clearance/image analysis techniques to detect rare events, and to learn what happens at the end-point of a tangle's life history. We were able to identify 8103 tau tangles, 132 465 neurons and 299 640 nuclei in tissue samples from three subjects with severe Alzheimer's disease (Braak V-VI) and 4 tau tangles, 200 447 neurons and 462 715 nuclei in tissue samples from three subjects with no significant tau pathology (Braak 0-I). Among these data, we located 57 ghost tangles, which makes them only 0.7% of the total tau tangles observed. We found that ghost tangles are more likely to be found in cortical layers 3 and 5 (49/57), with a select few scattered across other layers 1, 2, 4 and 6. This ability to find rare events, such as ghost tangles, in large enough quantities to statistically test their distribution exemplifies how tissue clearing can be used as a powerful tool for studying selective vulnerability or resilience to pathology across brain regions.
Collapse
Affiliation(s)
- Theodore J Zwang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
| | - Benjamin Woost
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joshua Bailey
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - Zachary Hoglund
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - Douglas S Richardson
- Department of Molecular and Cellular Biology and Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
| | - Rachel E Bennett
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
| |
Collapse
|
6
|
Efficient 3D light-sheet imaging of very large-scale optically cleared human brain and prostate tissue samples. Commun Biol 2023; 6:170. [PMID: 36781939 PMCID: PMC9925784 DOI: 10.1038/s42003-023-04536-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm3 sized formalin fixed human brain and up to ~7 cm3 sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm3 scale cleared tissue. We used mosaic scans for fast 3D overviews of entire tissue samples or higher resolution overviews of large ROIs with various speeds: (a) Mosaic 16 (16.4 µm isotropic resolution, ~1.7 h/cm3), (b) Mosaic 4 (4.1 µm isotropic resolution, ~ 5 h/cm3) and (c) Mosaic 0.5 (0.5 µm near isotropic resolution, ~15.8 h/cm3). We could visualise cortical layers and neurons around the border of human brain areas V1&V2, and could demonstrate suitable imaging quality for Gleason score grading in thick prostate cancer samples. We show that ct-dSPIM imaging is an excellent technique to quantitatively assess entire MASH prepared large-scale human tissue samples in 3D, with considerable future clinical potential.
Collapse
|
7
|
Optimized single-step optical clearing solution for 3D volume imaging of biological structures. Commun Biol 2022; 5:431. [PMID: 35534680 PMCID: PMC9085829 DOI: 10.1038/s42003-022-03388-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Various optical clearing approaches have been introduced to meet the growing demand for 3D volume imaging of biological structures. Each has its own strengths but still suffers from low transparency, long incubation time, processing complexity, tissue deformation, or fluorescence quenching, and a single solution that best satisfies all aspects has yet been developed. Here, we develop OptiMuS, an optimized single-step solution that overcomes the shortcomings of the existing aqueous-based clearing methods and that provides the best performance in terms of transparency, clearing rate, and size retention. OptiMuS achieves rapid and high transparency of brain tissues and other intact organs while preserving the size and fluorescent signal of the tissues. Moreover, OptiMuS is compatible with the use of lipophilic dyes, revealing DiI-labeled vascular structures of the whole brain, kidney, spleen, and intestine, and is also applied to 3D quantitative and comparative analysis of DiI-labeled vascular structures of glomeruli turfs in normal and diseased kidneys. Together, OptiMuS provides a single-step solution for simple, fast, and versatile optical clearing method to obtain high tissue transparency with minimum structural changes and is widely applicable for 3D imaging of various whole biological structures. OptiMuS is an optical clearing method which preserves endogenous fluorescence and sample sizes and can be used to clear thick tissues, visualize neural networks and vascular structures and diagnose pathological status of kidneys, as a potential application.
Collapse
|