1
|
Bernstein-Eliav M, Tavor I. The Prediction of Brain Activity from Connectivity: Advances and Applications. Neuroscientist 2024; 30:367-377. [PMID: 36250457 PMCID: PMC11107130 DOI: 10.1177/10738584221130974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human brain is composed of multiple, discrete, functionally specialized regions that are interconnected to form large-scale distributed networks. Using advanced brain-imaging methods and machine-learning analytical approaches, recent studies have demonstrated that regional brain activity during the performance of various cognitive tasks can be accurately predicted from patterns of task-independent brain connectivity. In this review article, we first present evidence for the predictability of brain activity from structural connectivity (i.e., white matter connections) and functional connectivity (i.e., temporally synchronized task-free activations). We then discuss the implications of such predictions to clinical populations, such as patients diagnosed with psychiatric disorders or neurologic diseases, and to the study of brain-behavior associations. We conclude that connectivity may serve as an infrastructure that dictates brain activity, and we pinpoint several open questions and directions for future research.
Collapse
Affiliation(s)
| | - Ido Tavor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Pini L, Salvalaggio A, Corbetta M. Beyond functional MRI signals: molecular and cellular modifiers of the functional connectome and cognition. Neural Regen Res 2024; 19:937-938. [PMID: 37862177 PMCID: PMC10749616 DOI: 10.4103/1673-5374.385292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | - Alessandro Salvalaggio
- Padova Neuroscience Center, University of Padova, Italy
- Department of Neuroscience, University of Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
- Department of Neuroscience, University of Padova, Italy
| |
Collapse
|
3
|
Zhang H, Chen K, Bao J, Wu H. Oxytocin enhances the triangular association among behavior, resting-state, and task-state functional connectivity. Hum Brain Mapp 2023; 44:6074-6089. [PMID: 37771300 PMCID: PMC10619367 DOI: 10.1002/hbm.26498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Considerable advances in the role of oxytocin (OT) effect on behavior and the brain network have been made, but the effect of OT on the association between inter-individual differences in functional connectivity (FC) and behavior is elusive. Here, by using a face-perception task and multiple connectome-based predictive models, we aimed to (1) determine whether OT could enhance the association among behavioral performance, resting-state FC (rsFC), and task-state FC (tsFC) and (2) if so, explore the role of OT in enhancing this triangular association. We found that in the OT group, the prediction performance of using rsFC or tsFC to predict task behavior was higher than that of the PL group. Additionally, the correlation coefficient between rsFC and tsFC was substantially higher in the OT group than in the PL group. The strength of these associations could be partly explained by OT altering the brain's FCs related to social cognition and face perception in both the resting and task states, mainly in brain regions such as the limbic system, prefrontal cortex, temporal poles, and temporoparietal junction. Taken together, these results provide novel evidence and a corresponding mechanism for how neuropeptides cause increased associations among inter-individual differences across different levels (e.g., behavior and large-scale brain networks in both resting and task-state), and may inspire future research on the role of neuropeptides in the cross levels association of both clinical and nonclinical use.
Collapse
Affiliation(s)
- Haoming Zhang
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| | - Kun Chen
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| | - Jin Bao
- Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences (CAS)ShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| |
Collapse
|
4
|
Tik N, Gal S, Madar A, Ben-David T, Bernstein-Eliav M, Tavor I. Generalizing prediction of task-evoked brain activity across datasets and populations. Neuroimage 2023; 276:120213. [PMID: 37268097 DOI: 10.1016/j.neuroimage.2023.120213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Predictions of task-based functional magnetic resonance imaging (fMRI) from task-free resting-state (rs) fMRI have gained popularity over the past decade. This method holds a great promise for studying individual variability in brain function without the need to perform highly demanding tasks. However, in order to be broadly used, prediction models must prove to generalize beyond the dataset they were trained on. In this work, we test the generalizability of prediction of task-fMRI from rs-fMRI across sites, MRI vendors and age-groups. Moreover, we investigate the data requirements for successful prediction. We use the Human Connectome Project (HCP) dataset to explore how different combinations of training sample sizes and number of fMRI datapoints affect prediction success in various cognitive tasks. We then apply models trained on HCP data to predict brain activations in data from a different site, a different MRI vendor (Phillips vs. Siemens scanners) and a different age group (children from the HCP-development project). We demonstrate that, depending on the task, a training set of approximately 20 participants with 100 fMRI timepoints each yields the largest gain in model performance. Nevertheless, further increasing sample size and number of timepoints results in significantly improved predictions, until reaching approximately 450-600 training participants and 800-1000 timepoints. Overall, the number of fMRI timepoints influences prediction success more than the sample size. We further show that models trained on adequate amounts of data successfully generalize across sites, vendors and age groups and provide predictions that are both accurate and individual-specific. These findings suggest that large-scale publicly available datasets may be utilized to study brain function in smaller, unique samples.
Collapse
Affiliation(s)
- Niv Tik
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shachar Gal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Ben-David
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Bernstein-Eliav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ido Tavor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Wu J, Li J, Eickhoff SB, Scheinost D, Genon S. The challenges and prospects of brain-based prediction of behaviour. Nat Hum Behav 2023; 7:1255-1264. [PMID: 37524932 DOI: 10.1038/s41562-023-01670-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Abstract
Relating individual brain patterns to behaviour is fundamental in system neuroscience. Recently, the predictive modelling approach has become increasingly popular, largely due to the recent availability of large open datasets and access to computational resources. This means that we can use machine learning models and interindividual differences at the brain level represented by neuroimaging features to predict interindividual differences in behavioural measures. By doing so, we could identify biomarkers and neural correlates in a data-driven fashion. Nevertheless, this budding field of neuroimaging-based predictive modelling is facing issues that may limit its potential applications. Here we review these existing challenges, as well as those that we anticipate as the field develops. We focus on the impacts of these challenges on brain-based predictions. We suggest potential solutions to address the resolvable challenges, while keeping in mind that some general and conceptual limitations may also underlie the predictive modelling approach.
Collapse
Affiliation(s)
- Jianxiao Wu
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jingwei Li
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT, USA
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Dhamala E, Yeo BTT, Holmes AJ. One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry. Biol Psychiatry 2023; 93:717-728. [PMID: 36577634 DOI: 10.1016/j.biopsych.2022.09.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022]
Abstract
Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|