1
|
Greaves MD, Novelli L, Mansour L S, Zalesky A, Razi A. Structurally informed models of directed brain connectivity. Nat Rev Neurosci 2025; 26:23-41. [PMID: 39663407 DOI: 10.1038/s41583-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Understanding how one brain region exerts influence over another in vivo is profoundly constrained by models used to infer or predict directed connectivity. Although such neural interactions rely on the anatomy of the brain, it remains unclear whether, at the macroscale, structural (or anatomical) connectivity provides useful constraints on models of directed connectivity. Here, we review the current state of research on this question, highlighting a key distinction between inference-based effective connectivity and prediction-based directed functional connectivity. We explore the methods via which structural connectivity has been integrated into directed connectivity models: through prior distributions, fixed parameters in state-space models and inputs to structure learning algorithms. Although the evidence suggests that integrating structural connectivity substantially improves directed connectivity models, assessments of reliability and out-of-sample validity are lacking. We conclude this Review with a strategy for future research that addresses current challenges and identifies opportunities for advancing the integration of structural and directed connectivity to ultimately improve understanding of the brain in health and disease.
Collapse
Affiliation(s)
- Matthew D Greaves
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Leonardo Novelli
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Sina Mansour L
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Adeel Razi
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Fousek J, Rabuffo G, Gudibanda K, Sheheitli H, Petkoski S, Jirsa V. Symmetry breaking organizes the brain's resting state manifold. Sci Rep 2024; 14:31970. [PMID: 39738729 PMCID: PMC11686292 DOI: 10.1038/s41598-024-83542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain's health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a mechanistic description of the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major data features across scales and imaging modalities. These include spontaneous high-amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the single recordings towards the brain's capacity to generate certain dynamics characteristic of health and pathology.
Collapse
Affiliation(s)
- Jan Fousek
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| | - Giovanni Rabuffo
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Kashyap Gudibanda
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Hiba Sheheitli
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Spase Petkoski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Viktor Jirsa
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
| |
Collapse
|
3
|
Bryant AG, Aquino K, Parkes L, Fornito A, Fulcher BD. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. PLoS Comput Biol 2024; 20:e1012692. [PMID: 39715231 PMCID: PMC11706466 DOI: 10.1371/journal.pcbi.1012692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.
Collapse
Affiliation(s)
- Annie G. Bryant
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
- Brain Key Incorporated, San Francisco, California, United States of America
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey, United States of America
- School of Psychological Sciences, Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Bryant AG, Aquino K, Parkes L, Fornito A, Fulcher BD. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.573372. [PMID: 38915560 PMCID: PMC11195072 DOI: 10.1101/2024.01.10.573372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.
Collapse
Affiliation(s)
- Annie G. Bryant
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
- Brain Key Incorporated, San Francisco, CA, USA
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
5
|
Pang JC, Aquino KM, Oldehinkel M, Robinson PA, Fulcher BD, Breakspear M, Fornito A. Geometric constraints on human brain function. Nature 2023; 618:566-574. [PMID: 37258669 PMCID: PMC10266981 DOI: 10.1038/s41586-023-06098-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.
Collapse
Affiliation(s)
- James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Kevin M Aquino
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- BrainKey Inc., San Francisco, CA, USA
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter A Robinson
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Sip V, Hashemi M, Dickscheid T, Amunts K, Petkoski S, Jirsa V. Characterization of regional differences in resting-state fMRI with a data-driven network model of brain dynamics. SCIENCE ADVANCES 2023; 9:eabq7547. [PMID: 36930710 PMCID: PMC10022900 DOI: 10.1126/sciadv.abq7547] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Model-based data analysis of whole-brain dynamics links the observed data to model parameters in a network of neural masses. Recently, studies focused on the role of regional variance of model parameters. Such analyses however necessarily depend on the properties of preselected neural mass model. We introduce a method to infer from the functional data both the neural mass model representing the regional dynamics and the region- and subject-specific parameters while respecting the known network structure. We apply the method to human resting-state fMRI. We find that the underlying dynamics can be described as noisy fluctuations around a single fixed point. The method reliably discovers three regional parameters with clear and distinct role in the dynamics, one of which is strongly correlated with the first principal component of the gene expression spatial map. The present approach opens a novel way to the analysis of resting-state fMRI with possible applications for understanding the brain dynamics during aging or neurodegeneration.
Collapse
Affiliation(s)
- Viktor Sip
- Aix-Marseille Université, INSERM, Institut de Neurosciences de Systèmes (INS), Marseille, France
| | - Meysam Hashemi
- Aix-Marseille Université, INSERM, Institut de Neurosciences de Systèmes (INS), Marseille, France
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Spase Petkoski
- Aix-Marseille Université, INSERM, Institut de Neurosciences de Systèmes (INS), Marseille, France
| | - Viktor Jirsa
- Aix-Marseille Université, INSERM, Institut de Neurosciences de Systèmes (INS), Marseille, France
| |
Collapse
|
7
|
Reliability and subject specificity of personalized whole-brain dynamical models. Neuroimage 2022; 257:119321. [PMID: 35580807 DOI: 10.1016/j.neuroimage.2022.119321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
Collapse
|
8
|
Human brain structural connectivity matrices-ready for modelling. Sci Data 2022; 9:486. [PMID: 35945231 PMCID: PMC9363436 DOI: 10.1038/s41597-022-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
The human brain represents a complex computational system, the function and structure of which may be measured using various neuroimaging techniques focusing on separate properties of the brain tissue and activity. We capture the organization of white matter fibers acquired by diffusion-weighted imaging using probabilistic diffusion tractography. By segmenting the results of tractography into larger anatomical units, it is possible to draw inferences about the structural relationships between these parts of the system. This pipeline results in a structural connectivity matrix, which contains an estimate of connection strength among all regions. However, raw data processing is complex, computationally intensive, and requires expert quality control, which may be discouraging for researchers with less experience in the field. We thus provide brain structural connectivity matrices in a form ready for modelling and analysis and thus usable by a wide community of scientists. The presented dataset contains brain structural connectivity matrices together with the underlying raw diffusion and structural data, as well as basic demographic data of 88 healthy subjects. Measurement(s) | Diffusion Weighted Imaging | Technology Type(s) | Magnetic Resonance Imaging | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Location | Czech Republic |
Collapse
|
9
|
Siu PH, Müller E, Zerbi V, Aquino K, Fulcher BD. Extracting Dynamical Understanding From Neural-Mass Models of Mouse Cortex. Front Comput Neurosci 2022; 16:847336. [PMID: 35547660 PMCID: PMC9081874 DOI: 10.3389/fncom.2022.847336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.
Collapse
Affiliation(s)
- Pok Him Siu
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Eli Müller
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Valerio Zerbi
- Neural Control of Movement Lab, D-HEST, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|