1
|
Lemaire JJ, Chaix R, Dautkulova A, Sontheimer A, Coste J, Marques AR, Wohrer A, Chassain C, Ouachikh O, Ait-Aider O, Fontaine D. An MRI Deep Brain Adult Template With An Advanced Atlas-Based Tool For Diffusion Tensor Imaging Analysis. Sci Data 2024; 11:1189. [PMID: 39487161 PMCID: PMC11530659 DOI: 10.1038/s41597-024-04053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Understanding the architecture of the human deep brain is especially challenging because of the complex organization of the nuclei and fascicles that support most sensorimotor and behaviour controls. There are scant dedicated tools to explore and analyse this region. Here we took a transdisciplinary approach to build a new deep-brain MRI architecture atlas drawing on advanced clinical experience of MRI-based deep brain mapping. This new tool comprises a young-male-adult MRI template spatially normalized to the ICBM152, containing T1, inversion-recovery, and diffusion MRI datasets (in vivo acquisition), and an MRI atlas of 118 labelled deep brain structures. It is open-source and gives users high resolution image datasets to describe nuclear-based and axonal architecture, combining pioneering and recent knowledge. It is a useful addition to current 3D atlases and clinical tools.
Collapse
Affiliation(s)
- Jean-Jacques Lemaire
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France.
| | - Rémi Chaix
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Aigerim Dautkulova
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Anna Sontheimer
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Jérôme Coste
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Ana-Raquel Marques
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Adrien Wohrer
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Carine Chassain
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Omar Ouachikh
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Omar Ait-Aider
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Denys Fontaine
- Université Nice Côte d'Azur, CHU de Nice, F-06103, Nice, Cedex 2, France
| |
Collapse
|
2
|
Roh HW, Chauhan N, Seo SW, Choi SH, Kim E, Cho SH, Kim BC, Choi JW, An Y, Park B, Lee SM, Moon SY, Nam YJ, Hong S, Son SJ, Hong CH, Lee D. Assessing cognitive impairment and disability in older adults through the lens of whole brain white matter patterns. Alzheimers Dement 2024; 20:6032-6044. [PMID: 39001624 PMCID: PMC11497644 DOI: 10.1002/alz.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION This study aimed to explore the potential of whole brain white matter patterns as novel neuroimaging biomarkers for assessing cognitive impairment and disability in older adults. METHODS We conducted an in-depth analysis of magnetic resonance imaging (MRI) and amyloid positron emission tomography (PET) scans in 454 participants, focusing on white matter patterns and white matter inter-subject variability (WM-ISV). RESULTS The white matter pattern ensemble model, combining MRI and amyloid PET, demonstrated a significantly higher classification performance for cognitive impairment and disability. Participants with Alzheimer's disease (AD) exhibited higher WM-ISV than participants with subjective cognitive decline, mild cognitive impairment, and vascular dementia. Furthermore, WM-ISV correlated significantly with blood-based biomarkers (such as glial fibrillary acidic protein and phosphorylated tau-217 [p-tau217]), and cognitive function and disability scores. DISCUSSION Our results suggest that white matter pattern analysis has significant potential as an adjunct neuroimaging biomarker for clinical decision-making and determining cognitive impairment and disability. HIGHLIGHTS The ensemble model combined both magnetic resonance imaging (MRI) and amyloid positron emission tomography (PET) and demonstrated a significantly higher classification performance for cognitive impairment and disability. Alzheimer's disease (AD) revealed a notably higher heterogeneity compared to that in subjective cognitive decline, mild cognitive impairment, or vascular dementia. White matter inter-subject variability (WM-ISV) was significantly correlated with blood-based biomarkers (glial fibrillary acidic protein and phosphorylated tau-217 [p-tau217]) and with the polygenic risk score for AD. White matter pattern analysis has significant potential as an adjunct neuroimaging biomarker for clinical decision-making processes and determining cognitive impairment and disability.
Collapse
Affiliation(s)
- Hyun Woong Roh
- Department of PsychiatryAjou University School of MedicineSuwonRepublic of Korea
| | - Nishant Chauhan
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Sang Won Seo
- Department of NeurologySamsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Seong Hye Choi
- Department of NeurologyInha University School of MedicineIncheonRepublic of Korea
| | - Eun‐Joo Kim
- Department of NeurologyPusan National University HospitalPusan National University School of Medicine and Medical Research InstituteBusanRepublic of Korea
| | - Soo Hyun Cho
- Department of NeurologyChonnam National University Medical SchoolChonnam National University HospitalGwangjuRepublic of Korea
| | - Byeong C. Kim
- Department of NeurologyChonnam National University Medical SchoolChonnam National University HospitalGwangjuRepublic of Korea
| | - Jin Wook Choi
- Department of RadiologyAjou University School of MedicineSuwonRepublic of Korea
| | - Young‐Sil An
- Department of Nuclear Medicine and Molecular ImagingAjou University School of MedicineSuwonRepublic of Korea
| | - Bumhee Park
- Department of Biomedical InformaticsAjou University School of MedicineSuwonRepublic of Korea
- Office of BiostatisticsAjou Research Institute for Innovative MedicineAjou University Medical CenterSuwonRepublic of Korea
| | - Sun Min Lee
- Department of NeurologyAjou University School of MedicineSuwonRepublic of Korea
| | - So Young Moon
- Department of NeurologyAjou University School of MedicineSuwonRepublic of Korea
| | - You Jin Nam
- Department of PsychiatryAjou University School of MedicineSuwonRepublic of Korea
| | - Sunhwa Hong
- Department of PsychiatryAjou University School of MedicineSuwonRepublic of Korea
| | - Sang Joon Son
- Department of PsychiatryAjou University School of MedicineSuwonRepublic of Korea
| | - Chang Hyung Hong
- Department of PsychiatryAjou University School of MedicineSuwonRepublic of Korea
| | - Dongha Lee
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| |
Collapse
|
3
|
Farrugia C, Galdi P, Irazu IA, Scerri K, Bajada CJ. Local gradient analysis of human brain function using the Vogt-Bailey Index. Brain Struct Funct 2024; 229:497-512. [PMID: 38294531 PMCID: PMC10917869 DOI: 10.1007/s00429-023-02751-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/09/2023] [Indexed: 02/01/2024]
Abstract
In this work, we take a closer look at the Vogt-Bailey (VB) index, proposed in Bajada et al. (NeuroImage 221:117140, 2020) as a tool for studying local functional homogeneity in the human cortex. We interpret the VB index in terms of the minimum ratio cut, a scaled cut-set weight that indicates whether a network can easily be disconnected into two parts having a comparable number of nodes. In our case, the nodes of the network consist of a brain vertex/voxel and its neighbours, and a given edge is weighted according to the affinity of the nodes it connects (as reflected by the modified Pearson correlation between their fMRI time series). Consequently, the minimum ratio cut quantifies the degree of small-scale similarity in brain activity: the greater the similarity, the 'heavier' the edges and the more difficult it is to disconnect the network, hence the higher the value of the minimum ratio cut. We compare the performance of the VB index with that of the Regional Homogeneity (ReHo) algorithm, commonly used to assess whether voxels in close proximity have synchronised fMRI signals, and find that the VB index is uniquely placed to detect sharp changes in the (local) functional organization of the human cortex.
Collapse
Affiliation(s)
- Christine Farrugia
- Faculty of Engineering, L-Università ta' Malta, Msida, Malta.
- University of Malta Magnetic Resonance Imaging Platform (UMRI), L-Università ta' Malta, Msida, Malta.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
| | - Paola Galdi
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | | | - Kenneth Scerri
- Faculty of Engineering, L-Università ta' Malta, Msida, Malta
| | - Claude J Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI), L-Università ta' Malta, Msida, Malta.
- Faculty of Medicine and Surgery, L-Università ta' Malta, Msida, Malta.
| |
Collapse
|