1
|
Grégoire C, Attout L, Phillips C, Rifon L, Hody L, Majerus S. The Neural Specificity of Interference Resolution in Phonological, Semantic, and Visual Domains at Different Ages. J Cogn Neurosci 2025; 37:345-371. [PMID: 39432690 DOI: 10.1162/jocn_a_02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The question of whether cognitive control is specific to certain domains or domain-general remains an extensively debated question at both cognitive and neural levels. This study examined the neural substrates associated with resistance to interference (RI) in phonological, semantic, and visual domains by using strictly matched tasks and determining the domain-general or domain-specific manner in which aging affects the neural substrates associated with RI. In an fMRI experiment, young and older participants performed a similarity judgment task with phonological, semantic, or visual interference buildup. For both age groups, domain-specific RI effects were observed at the univariate level, with increased involvement in the phonological domain of the right angular gyrus and the right lingual gyrus, in the semantic domain of the bilateral inferior frontal gyrus, the bilateral superior parietal and angular gyri and the left middle temporal gyrus, and in the visual domain of the middle/superior frontal gyri and occipital gyri. At the multivariate level, although RI effects could be decoded from neural patterns in the bilateral inferior frontal gyrus for all domains and age groups, between-domain prediction of RI conditions was associated with Bayesian evidence for the null hypothesis. This study supports the domain specificity of neural substrates associated with RI while stressing its age independency.
Collapse
Affiliation(s)
| | - Lucie Attout
- Université de Liège
- Fund for Scientific Research FNRS, Belgique
- Université Paul Valéry Montpellier 3
| | | | | | | | | |
Collapse
|
2
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2025; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
3
|
Festini SB, McDonough IM. Impact of individual differences in cognitive reserve, stress, and busyness on episodic memory: an fMRI analysis of the Alabama Brain Study On Risk for Dementia. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:63-88. [PMID: 39702727 DOI: 10.3758/s13415-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Cognitive reserve (CR) and busyness can boost memory, whereas stress can impair memory. Nevertheless, extant research has not yet examined busyness in conjunction with CR and stress, nor whether CR or stress moderate the relationship between busyness and episodic memory. Middle-aged and older adult participants (N = 71; ages 50-74; 31% African-American) answered lifestyle questionnaires and completed a visual paired-associate memory fMRI task. Dimension reduction techniques identified two latent CR factors-personal CR (own education; occupation complexity; socioeconomic status) and parental education (mother's/father's education), and identified two latent stress factors-external stress (neighborhood stress/violence; financial strain) and personal stress (perceived stress; work/personal stress). We cast these latent factors into a series of regression models, revealing that (1) in isolation, higher busyness predicted better episodic memory, (2) higher external stress predicted worse memory, (3) both greater personal CR and greater parental education predicted better memory, (4) busyness did not interact with stress nor with CR, and (5) in a combined model, higher parental education and lower external stress were significant independent predictors. Neuroimaging data revealed that higher CR was associated with more efficient brain activity in the hippocampus and posterior cingulate during successful episodic memory retrieval, whereas higher personal stress was associated with heightened activity in the precuneus. No interactions or main effects of busyness were observed for the fMRI data. Thus, although busyness was associated with superior episodic memory, busyness did not modulate brain activity during episodic memory retrieval, nor did CR or stress moderate the relationship between busyness and associative memory.
Collapse
Affiliation(s)
- Sara B Festini
- Department of Psychology, University of Tampa, 401 W. Kennedy Blvd., Tampa, FL, 33606, USA.
| | - Ian M McDonough
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
4
|
Festini SB, Kegler G, Reuter-Lorenz PA. Hemispheric organization of the brain and its prevailing impact on the neuropsychology of aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:169-180. [PMID: 40074395 DOI: 10.1016/b978-0-443-15646-5.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Age differences in brain hemispheric asymmetry have figured prominently in the neuropsychology of aging. Here, a broad overview of these empirical and theoretical approaches is provided that dates back to the 1970s and continues to the present day. Methodological advances often brought new evidence to bear on older ideas and promoted the development of new ones. The deficit-focused hypothesis of accelerated right-hemisphere aging is reviewed first, followed by subsequent accounts pertaining to compensation, reserve, and their potential hemispheric underpinnings. Structural and functional neuroimaging reveal important and consistent age-related patterns, including indications of reduced brain asymmetry in older relative to younger adults. While not mutually exclusive, different neuropsychologic theories of aging offer divergent interpretations of such patterns, including age-related reductions in neural specificity (dedifferentiation) and age-related compensatory bilateral recruitment [e.g., Hemispheric Asymmetry Reduction in Older Adults (HAROLD); Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH)]. Further, recent neurobehavioral evidence suggests that the right hemisphere plays a unique role in resisting the neurocognitive effects of aging via brain reserve. Future advances in human cognitive neuroscience, including neurostimulation methods for targeted interventions, along with analytic techniques informed by machine learning promise new insights into the neuropsychology of aging and the role of hemispheric processes in resilience and decline.
Collapse
|
5
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
6
|
Baciu M, Roger E. Finding the Words: How Does the Aging Brain Process Language? A Focused Review of Brain Connectivity and Compensatory Pathways. Top Cogn Sci 2024. [PMID: 38734967 DOI: 10.1111/tops.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
As people age, there is a natural decline in cognitive functioning and brain structure. However, the relationship between brain function and cognition in older adults is neither straightforward nor uniform. Instead, it is complex, influenced by multiple factors, and can vary considerably from one person to another. Reserve, compensation, and maintenance mechanisms may help explain why some older adults can maintain high levels of performance while others struggle. These mechanisms are often studied concerning memory and executive functions that are particularly sensitive to the effects of aging. However, language abilities can also be affected by age, with changes in production fluency. The impact of brain changes on language abilities needs to be further investigated to understand the dynamics and patterns of aging, especially successful aging. We previously modeled several compensatory profiles of language production and lexical access/retrieval in aging within the Lexical Access and Retrieval in Aging (LARA) model. In the present paper, we propose an extended version of the LARA model, called LARA-Connectivity (LARA-C), incorporating recent evidence on brain connectivity. Finally, we discuss factors that may influence the strategies implemented with aging. The LARA-C model can serve as a framework to understand individual performance and open avenues for possible personalized interventions.
Collapse
Affiliation(s)
- Monica Baciu
- LPNC, Psychology Department, Grenoble Alps University
- Neurology Department, Grenoble Alps University Hospital
| | - Elise Roger
- LPNC, Psychology Department, Grenoble Alps University
- Communication and Aging Laboratory, Research Center of the University Institute of Geriatrics of Montreal
- Faculty of Medicine, University of Montreal
| |
Collapse
|
7
|
Zając-Lamparska L, Zabielska-Mendyk E, Zapała D, Augustynowicz P. Compensatory brain activity pattern is not present in older adults during the n-back task performance-Findings based on EEG frequency analysis. Front Psychol 2024; 15:1371035. [PMID: 38666231 PMCID: PMC11043891 DOI: 10.3389/fpsyg.2024.1371035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Cognitive ability is one of the most important enablers for successful aging. At the same time, cognitive decline is a well-documented phenomenon accompanying the aging process. Nevertheless, it is acknowledged that aging can also be related to positive processes that allow one to compensate for the decline. These processes include the compensatory brain activity of older adults primarily investigated using fMRI and PET. To strengthen the cognitive interpretation of compensatory brain activity in older adults, we searched for its indicators in brain activity measured by EEG. Methods The study sample comprised 110 volunteers, including 50 older adults (60-75 years old) and 60 young adults (20-35 years old) who performed 1-back, 2-back, and 3-back tasks while recording the EEG signal. The study analyzed (1) the level of cognitive performance, including sensitivity index, the percentage of correct answers to the target, and the percentage of false alarm errors; (2) theta and alpha power for electrodes located in the frontal-midline (Fz, AF3, AF4, F3, F4, FC1, and FC2) and the centro-parietal (CP1, CP2, P3, P4, and Pz) areas. Results Cognitive performance was worse in older adults than in young adults, which manifested in a significantly lower sensitivity index and a significantly higher false alarm error rate at all levels of the n-back task difficulty. Simultaneously, performance worsened with increasing task difficulty regardless of age. Significantly lower theta power in the older participants was observed at all difficulty levels, even at the lowest one, where compensatory activity was expected. At the same time, at this difficulty level, cognitive performance was worse in older adults than in young adults, which could reduce the chances of observing compensatory brain activity. The significant decrease in theta power observed in both age groups with rising task difficulty can reflect a declining capacity for efficient cognitive functioning under increasing demands rather than adapting to this increase. Moreover, in young adults, alpha power decreased to some extent with increasing cognitive demand, reflecting adaptation to them, while in older adults, no analogous pattern was observed. Discussion In conclusion, based on the results of the current study, the presence of compensatory activity in older adults cannot be inferred.
Collapse
Affiliation(s)
- Ludmiła Zając-Lamparska
- Department of General and Human Development Psychology, Faculty of Psychology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Emilia Zabielska-Mendyk
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Dariusz Zapała
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Paweł Augustynowicz
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Reuter-Lorenz PA, Park DC. Cognitive aging and the life course: A new look at the Scaffolding theory. Curr Opin Psychol 2024; 56:101781. [PMID: 38278087 DOI: 10.1016/j.copsyc.2023.101781] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
Our understanding of human neurocognitive aging, its developmental roots, and life course influences has been transformed by brain imaging technologies, increasing availability of longitudinal data sets, and analytic advances. The Scaffolding Theory of Aging and Cognition is a life course model, proposed originally in 2009, featuring adaptivity and compensatory potential as lifelong mechanisms for meeting neurocognitive challenges posed by the environment and by developing or declining brain circuitry. Here, we review the scaffolding theory in relation to new evidence addressing when during the life course potentially enriching and depleting factors exert their effects on brain health and scaffolding, and we consider the implications for separable, and potentially reciprocal, influences on the level of cognitive function and the rate of decline in later life.
Collapse
|
9
|
Zhang D, Huang Y, Liu S, Gao J, Liu W, Liu W, Ai K, Lei X, Zhang X. Structural and functional connectivity alteration patterns of the cingulate gyrus in Type 2 diabetes. Ann Clin Transl Neurol 2023; 10:2305-2315. [PMID: 37822294 PMCID: PMC10723245 DOI: 10.1002/acn3.51918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE We aimed to reveal the role of structural and functional alterations of cingulate gyrus in early cognitive impairment in Type 2 diabetes mellitus (T2DM) patients. METHODS Fifty-six T2DM patients and 60 healthy controls (HCs) underwent a neuropsychological assessment and sagittal three-dimensional T1-weighted and resting-state functional MRI. Differences in the cortical thickness of the cingulate cortex and the functional connectivity (FC) of the nine subregions of the cingulate gyrus and the whole brain were compared between T2DM patients and HCs. Correlation analysis was performed between cortex thickness and FC and the participants' clinical/cognitive variables. RESULTS The cortical thickness of the cingulate gyrus was not significantly different between T2DM patients and HCs. However, the T2DM patients showed significantly lower FC between the pregenual ACC (pACC) and the bilateral hippocampus, significantly higher FC between the pACC and bilateral lateral prefrontal cortex (LPFC) and left precentral gyrus, and significantly lower FC between the retrosplenial cortex (RSC) and right cerebellar Crus I. The FC between the pACC and the left hippocampus was negatively correlated with the FC between the pACC and LPFC (r = -0.306, p = 0.022). INTERPRETATION The pACC and the RSC show dysfunctional connectivity before the appearance of structural abnormalities in T2DM patients. Abnormal FC of the pACC with the bilateral hippocampus and LPFC may imply a neural compensatory mechanism for memory function. These findings provide valuable information and new directions for possible interventions for the T2DM-related cognitive impairment.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Yang Huang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Shasha Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Jie Gao
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Weirui Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Wanting Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Kai Ai
- Department of Clinical SciencePhilips HealthcareXi'an710000China
| | - Xiaoyan Lei
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Xiaoling Zhang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| |
Collapse
|
10
|
Powell A, Page ZA, Close JCT, Sachdev PS, Brodaty H. Defining exceptional cognition in older adults: A systematic review of cognitive super-ageing. Int J Geriatr Psychiatry 2023; 38:e6034. [PMID: 38078669 PMCID: PMC10947516 DOI: 10.1002/gps.6034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE A consistent approach to defining cognitive super-ageing is needed to increase the value of research insights that may be gained from studying this population including ageing well and preventing and treating neurodegenerative conditions. This review aims to evaluate the existing definitions of 'super-ageing' with a focus on cognition. METHODS A systematic literature search was conducted across PubMed, Embase, Web of Science, Scopus, PsycINFO and Google Scholar from inception to 24 July 2023. RESULTS Of 44 English language studies that defined super-ageing from a cognitive perspective in older adults (60-97 years), most (n = 33) were based on preserved verbal episodic memory performance comparable to that of younger adult in age range 16-65 years. Eleven studies defined super-agers as the top cognitive performers for their age group based upon standard deviations or percentiles above the population mean. Only nine studies included longitudinal cognitive performance in their definitions. CONCLUSIONS Equivalent cognitive abilities to younger adults, exceptional cognition for age and a lack of cognitive deterioration over time are all meaningful constructs and may provide different insights into cognitive ageing. Using these criteria in combination or individually to define super-agers, with a clear rationale for which elements have been selected, could be fit for purpose depending on the research question. However, major discrepancies including the age range of super-agers and comparator groups and the choice of cognitive domains assessed should be addressed to reach some consensus in the field.
Collapse
Affiliation(s)
- Alice Powell
- Centre for Healthy Brain AgeingDiscipline of Psychiatry and Mental HealthSchool of Clinical MedicineUniversity of New South WalesRandwickNew South WalesAustralia
| | - Zara A. Page
- Centre for Healthy Brain AgeingDiscipline of Psychiatry and Mental HealthSchool of Clinical MedicineUniversity of New South WalesRandwickNew South WalesAustralia
| | - Jacqueline C. T. Close
- Neuroscience Research AustraliaUniversity of New South WalesSydneyNew South WalesAustralia
- The Prince of Wales Hospital Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Perminder S. Sachdev
- Centre for Healthy Brain AgeingDiscipline of Psychiatry and Mental HealthSchool of Clinical MedicineUniversity of New South WalesRandwickNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales Hospital Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Henry Brodaty
- Centre for Healthy Brain AgeingDiscipline of Psychiatry and Mental HealthSchool of Clinical MedicineUniversity of New South WalesRandwickNew South WalesAustralia
| |
Collapse
|
11
|
Jones KT, Gallen CL, Ostrand AE, Rojas JC, Wais P, Rini J, Chan B, Lago AL, Boxer A, Zhao M, Gazzaley A, Zanto TP. Gamma neuromodulation improves episodic memory and its associated network in amnestic mild cognitive impairment: a pilot study. Neurobiol Aging 2023; 129:72-88. [PMID: 37276822 PMCID: PMC10583532 DOI: 10.1016/j.neurobiolaging.2023.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is a predementia stage of Alzheimer's disease associated with dysfunctional episodic memory and limited treatment options. We aimed to characterize feasibility, clinical, and biomarker effects of noninvasive neurostimulation for aMCI. 13 individuals with aMCI received eight 60-minute sessions of 40-Hz (gamma) transcranial alternating current stimulation (tACS) targeting regions related to episodic memory processing. Feasibility, episodic memory, and plasma Alzheimer's disease biomarkers were assessed. Neuroplastic changes were characterized by resting-state functional connectivity (RSFC) and neuronal excitatory/inhibitory balance. Gamma tACS was feasible and aMCI participants demonstrated improvement in multiple metrics of episodic memory, but no changes in biomarkers. Improvements in episodic memory were most pronounced in participants who had the highest modeled tACS-induced electric fields and exhibited the greatest changes in RSFC. Increased RSFC was also associated with greater hippocampal excitability and higher baseline white matter integrity. This study highlights initial feasibility and the potential of gamma tACS to rescue episodic memory in an aMCI population by modulating connectivity and excitability within an episodic memory network.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| | - Courtney L Gallen
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Julio C Rojas
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Peter Wais
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - James Rini
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Brandon Chan
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Argentina Lario Lago
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Adam Boxer
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Min Zhao
- Departments of Ophthalmology and Vision Science and Dermatology, Institute for Regenerative Cures, University of California-Davis, Davis, CA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| |
Collapse
|
12
|
Zhang L, Wang X, Alain C, Du Y. Successful aging of musicians: Preservation of sensorimotor regions aids audiovisual speech-in-noise perception. SCIENCE ADVANCES 2023; 9:eadg7056. [PMID: 37126550 PMCID: PMC10132752 DOI: 10.1126/sciadv.adg7056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Musicianship can mitigate age-related declines in audiovisual speech-in-noise perception. We tested whether this benefit originates from functional preservation or functional compensation by comparing fMRI responses of older musicians, older nonmusicians, and young nonmusicians identifying noise-masked audiovisual syllables. Older musicians outperformed older nonmusicians and showed comparable performance to young nonmusicians. Notably, older musicians retained similar neural specificity of speech representations in sensorimotor areas to young nonmusicians, while older nonmusicians showed degraded neural representations. In the same region, older musicians showed higher neural alignment to young nonmusicians than older nonmusicians, which was associated with their training intensity. In older nonmusicians, the degree of neural alignment predicted better performance. In addition, older musicians showed greater activation in frontal-parietal, speech motor, and visual motion regions and greater deactivation in the angular gyrus than older nonmusicians, which predicted higher neural alignment in sensorimotor areas. Together, these findings suggest that musicianship-related benefit in audiovisual speech-in-noise processing is rooted in preserving youth-like representations in sensorimotor regions.
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, ON M8V 2S4, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
13
|
Stiernman L, Grill F, McNulty C, Bahrd P, Panes Lundmark V, Axelsson J, Salami A, Rieckmann A. Widespread fMRI BOLD Signal Overactivations during Cognitive Control in Older Adults Are Not Matched by Corresponding Increases in fPET Glucose Metabolism. J Neurosci 2023; 43:2527-2536. [PMID: 36868855 PMCID: PMC10082451 DOI: 10.1523/jneurosci.1331-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 03/05/2023] Open
Abstract
A common observation in fMRI studies using the BOLD signal is that older adults, compared with young adults, show overactivations, particularly during less demanding tasks. The neuronal underpinnings of such overactivations are not known, but a dominant view is that they are compensatory in nature and involve recruitment of additional neural resources. We scanned 23 young (20-37 years) and 34 older (65-86 years) healthy human adults of both sexes with hybrid positron emission tomography/MRI. The radioligand [18F]fluoro-deoxyglucose was used to assess dynamic changes in glucose metabolism as a marker of task-dependent synaptic activity, along with simultaneous fMRI BOLD imaging. Participants performed two verbal working memory (WM) tasks: one involving maintenance (easy) and one requiring manipulation (difficult) of information in WM. Converging activations to the WM tasks versus rest were observed for both imaging modalities and age groups in attentional, control, and sensorimotor networks. Upregulation of activity to WM-demand, comparing the more difficult to the easier task, also converged between both modalities and age groups. For regions in which older adults showed task-dependent BOLD overactivations compared with the young adults, no corresponding increases in glucose metabolism were found. To conclude, findings from the current study show that task-induced changes in the BOLD signal and synaptic activity as measured by glucose metabolism generally converge, but overactivations observed with fMRI in older adults are not coupled with increased synaptic activity, which suggests that these overactivations are not neuronal in origin.SIGNIFICANCE STATEMENT Findings of increased fMRI activations in older compared with younger adults have been suggested to reflect increased use of neuronal resources to cope with reduced brain function. The physiological underpinnings of such compensatory processes are poorly understood, however, and rest on the assumption that vascular signals accurately reflect neuronal activity. Comparing fMRI and simultaneously acquired functional positron emission tomography as an alternative index of synaptic activity, we show that age-related overactivations do not appear to be neuronal in origin. This result is important because mechanisms underlying compensatory processes in aging are potential targets for interventions aiming to prevent age-related cognitive decline.
Collapse
Affiliation(s)
- Lars Stiernman
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Filip Grill
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Charlotte McNulty
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Philip Bahrd
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Vania Panes Lundmark
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, 171 65 Solna, Sweden
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden
- Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social Policy, Munich, 80799 München, Germany
| |
Collapse
|
14
|
Relationship of prefrontal brain lateralization to optimal cognitive function differs with age. Neuroimage 2022; 264:119736. [PMID: 36396072 PMCID: PMC9901282 DOI: 10.1016/j.neuroimage.2022.119736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
There is considerable debate about whether additional fMRI-measured activity in the right prefrontal cortex readily observed in older adults represents compensatory activation that enhances cognition or whether maintenance of youthful brain activity best supports cognitive function in late adulthood. To investigate this issue, we tested a large lifespan sample of 461 adults (aged 20-89) and treated degree of left-lateralization in ventrolateral and dorsolateral prefrontal cortex during a semantic judgment fMRI task as an individual differences variable to predict cognition. We found that younger adults were highly left-lateralized, but lateralization did not predict better cognition, whereas higher left-lateralization of prefrontal cortex predicted better cognitive performance in middle-aged adults, providing evidence that left-lateralized, youth-like patterns are optimal in middle age. This relationship was reversed in older adults, with lower laterality scores associated with better cognition. The findings suggest that bilaterality in older adults facilitates cognition, but early manifestation of this pattern during middle age is characteristic of low performers. Implications of these findings for current theories of neurocognitive aging are discussed.
Collapse
|
15
|
McDonough IM, Nolin SA, Visscher KM. 25 years of neurocognitive aging theories: What have we learned? Front Aging Neurosci 2022; 14:1002096. [PMID: 36212035 PMCID: PMC9539801 DOI: 10.3389/fnagi.2022.1002096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The past 25 years have provided a rich discovery of at least four fundamental patterns that represent structural and functional brain aging across multiple cognitive domains. Of the many potential patterns of brain aging, few are ever examined simultaneously in a given study, leading one to question their mutual exclusivity. Moreover, more studies are emerging that note failures to replicate some brain aging patterns, thereby questioning the universality and prevalence of these patterns. Although some attempts have been made to create unifying theories incorporating many of these age-related brain patterns, we propose that the field’s understanding of the aging brain has been hindered due to a large number of influential models with little crosstalk between them. We briefly review these brain patterns, the influential domain-general theories of neurocognitive aging that attempt to explain them, and provide examples of recent challenges to these theories. Lastly, we elaborate on improvements that can be made to lead the field to more comprehensive and robust models of neurocognitive aging.
Collapse
Affiliation(s)
- Ian M. McDonough
- Department of Psychology, Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Ian M. McDonough,
| | - Sara A. Nolin
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristina M. Visscher
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|