1
|
Higuchi Y, Oblak E, Nakamura H, Yamada M, Shibata K. The role of memory in affirming-the-consequent fallacy. iScience 2025; 28:111889. [PMID: 40008358 PMCID: PMC11850161 DOI: 10.1016/j.isci.2025.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/09/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
People tend to recognize that a transitive relation remains true even when its order is reversed. This affirming-the-consequent fallacy is thought to be uniquely related to human intelligence. It is generally thought that this fallacy is a byproduct of explicit reasoning at the moment of recognition of the reversed order. Here, we provide evidence suggesting a reconsideration of this account using an implicit memory paradigm, which minimizes the involvement of explicit reasoning. Specifically, we tested a two-stage memory model: (1) when a sequence of events is encoded, the memory of the reversed sequence is formed, resulting in the affirming-the-consequent fallacy, and (2) the memories of the forward and reversed sequences are integrated over time, reinforcing the fallacy. Results of behavioral and functional magnetic resonance imaging experiments were consistent with this memory-based model. Our findings suggest that the affirming-the-consequent fallacy may begin unwittingly when individuals memorize a transitive relation.
Collapse
Affiliation(s)
- Yoko Higuchi
- RIKEN Center for Brain Science, RIKEN, Wako, Saitama, Japan
- Department of Cognitive and Information Sciences, Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Ethan Oblak
- RIKEN Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Hiroko Nakamura
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
- School of Science and Engineering, Tokyo Denki University, Adachi, Tokyo, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institute for Quantum Science and Technology, Inage, Chiba, Japan
| | | |
Collapse
|
2
|
Ren H, Li YZ, Bi HY, Yang Y. The shared neurobiological basis of developmental dyslexia and developmental stuttering: A meta-analysis of functional and structural MRI studies. Int J Clin Health Psychol 2024; 24:100519. [PMID: 39582485 PMCID: PMC11585698 DOI: 10.1016/j.ijchp.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024] Open
Abstract
Background Developmental dyslexia (DD) and persistent developmental stuttering (PDS) are the most representative written and spoken language disorders, respectively, and both significantly hinder life success. Although widespread brain alterations are evident in both DD and PDS, it remains unclear to what extent these two language disorders share common neural substrates. Methods A systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM) studies of PDS and DD were conducted to explore the shared functional and anatomical alterations across these disorders. Results The results of fMRI studies indicated shared hypoactivation in the left inferior temporal gyrus and inferior parietal gyrus across PDS and DD compared to healthy controls. When examined separately for children and adults, we found that child participants exhibited reduced activation in the left inferior temporal gyrus, inferior parietal gyrus, precentral gyrus, middle temporal gyrus, and inferior frontal gyrus, possibly reflecting the universal causes of written and spoken language disorders. In contrast, adult participants exhibited hyperactivation in the right precentral gyrus and left cingulate motor cortex, possibly reflecting common compensatory mechanisms. Anatomically, the analysis of VBM studies revealed decreased gray matter volume in the left inferior frontal gyrus across DD and PDS, which was exclusively observed in children. Finally, meta-analytic connectivity modeling and brain-behavior correlation analyses were conducted to explore functional connectivity patterns and related cognitive functions of the brain regions commonly involved in DD and PDS. Conclusions This study identified concordances in brain abnormalities across DD and PDS, suggesting common neural substrates for written and spoken language disorders and providing new insights into the transdiagnostic neural signatures of language disorders.
Collapse
Affiliation(s)
- Huan Ren
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi zhen Li
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| |
Collapse
|
3
|
Oestreicher S, Bowler DM, Derwent CT, Gaigg SB, Roessner V, Vetter N, Volk T, Beyer N, Ring M. Structural Learning in Autistic and Non-Autistic Children: A Replication and Extension. J Autism Dev Disord 2024:10.1007/s10803-024-06486-0. [PMID: 39269674 DOI: 10.1007/s10803-024-06486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/15/2024]
Abstract
The hippocampus is involved in many cognitive domains which are difficult for autistic individuals. Our previous study using a Structural Learning task that has been shown to depend on hippocampal functioning found that structural learning is diminished in autistic adults (Ring et al., 2017). The aim of the present study was to examine whether those results can be replicated in and extended to a sample of autistic and non-autistic children. We tested 43 autistic children and 38 non-autistic children with a subsample of 25 autistic and 28 non-autistic children who were well-matched on IQ. The children took part in a Simple Discrimination task which a simpler form of compound learning, and a Structural Learning task. We expected both groups to perform similarly in Simple Discrimination but reduced performance by the autism group on the Structural Learning task, which is what we found in both the well-matched and the non-matched sample. However, contrary to our prediction and the findings from autistic adults in our previous study, autistic children demonstrated a capacity for Structural Learning and showed an overall better performance in the tasks than was seen in earlier studies. We discuss developmental differences in autism as well as the role of executive functions that may have contributed to better than predicted task performance in this study.
Collapse
Affiliation(s)
- Svenja Oestreicher
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Claire T Derwent
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Sebastian B Gaigg
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nora Vetter
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Medical School Berlin, Department of Psychology, Berlin, Germany
| | - Theresia Volk
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nicole Beyer
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Melanie Ring
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Ait Bentaleb K, Boisvert M, Tourjman V, Potvin S. A Meta-Analysis of Functional Neuroimaging Studies of Ketamine Administration in Healthy Volunteers. J Psychoactive Drugs 2024; 56:211-224. [PMID: 36921026 DOI: 10.1080/02791072.2023.2190758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Ketamine administration leads to a psychotomimetic state when taken in large bolus doses, making it a valid model of psychosis. Therefore, understanding ketamine's effects on brain functioning is particularly relevant. This meta-analysis focused on neuroimaging studies that examined ketamine-induced brain activation at rest and during a task. Included are 10 resting-state studies and 23 task-based studies, 9 of which were measuring executive functions. Using a stringent statistical threshold (TFCE <0.05), the results showed increased activity at rest in the dorsal anterior cingulate cortex (ACC), and increased activation of the right Heschl's gyrus during executive tasks, following ketamine administration. Uncorrected results showed increased activation at rest in the right (anterior) insula and the right-fusiform gyrus, as well as increased activation during executive tasks in the rostral ACC. Rest-state studies highlighted alterations in core hubs of the salience network, while task-based studies suggested an impact on task-irrelevant brain regions. Increased activation in the rostral ACC may indicate a failure to deactivate the default mode network during executive tasks following ketamine administration. The results are coherent with alterations found in schizophrenia, which confer external validity to the ketamine model of psychosis. Studies investigating the neural mechanisms of ketamine's antidepressant action are warranted.
Collapse
Affiliation(s)
- Karim Ait Bentaleb
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Mélanie Boisvert
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Valérie Tourjman
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| |
Collapse
|
5
|
Heldmann M, Rohde LS, Münte TF, Ye Z. Cross-frequency and inter-regional phase synchronization in explicit transitive inference. Cereb Cortex 2024; 34:bhad494. [PMID: 38112627 DOI: 10.1093/cercor/bhad494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Explicit logical reasoning, like transitive inference, is a hallmark of human intelligence. This study investigated cortical oscillations and their interactions in transitive inference with EEG. Participants viewed premises describing abstract relations among items. They accurately recalled the relationship between old pairs of items, effectively inferred the relationship between new pairs of items, and discriminated between true and false relationships for new pairs. First, theta (4-7 Hz) and alpha oscillations (8-15 Hz) had distinct functional roles. Frontal theta oscillations distinguished between new and old pairs, reflecting the inference of new information. Parietal alpha oscillations changed with serial position and symbolic distance of the pairs, representing the underlying relational structure. Frontal alpha oscillations distinguished between true and false pairs, linking the new information with the underlying relational structure. Second, theta and alpha oscillations interacted through cross-frequency and inter-regional phase synchronization. Frontal theta-alpha 1:2 phase locking appeared to coordinate spectrally diverse neural activity, enhanced for new versus old pairs and true versus false pairs. Alpha-band frontal-parietal phase coherence appeared to coordinate anatomically distributed neural activity, enhanced for new versus old pairs and false versus true pairs. It suggests that cross-frequency and inter-regional phase synchronization among theta and alpha oscillations supports human transitive inference.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck 23538, Germany
- Center for Brain, Behavior & Metabolism, University of Lübeck, Lübeck 23538, Germany
| | | | - Thomas F Münte
- Center for Brain, Behavior & Metabolism, University of Lübeck, Lübeck 23538, Germany
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
6
|
Matsuhashi K, Itahashi T, Aoki R, Hashimoto RI. Meta-analysis of structural integrity of white matter and functional connectivity in developmental stuttering. Brain Res Bull 2023; 205:110827. [PMID: 38013029 DOI: 10.1016/j.brainresbull.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Developmental stuttering is a speech disfluency disorder characterized by repetitions, prolongations, and blocks of speech. While a number of neuroimaging studies have identified alterations in localized brain activation during speaking in persons with stuttering (PWS), it is unclear whether neuroimaging evidence converges on alterations in structural integrity of white matter and functional connectivity (FC) among multiple regions involved in supporting fluent speech. In the present study, we conducted coordinate-based meta-analyses according to the PRISMA guidelines for available publications that studied fractional anisotropy (FA) using tract-based spatial statistics (TBSS) for structural integrity and the seed-based voxel-wise FC analyses. The search retrieved 11 publications for the TBSS FA studies, 29 seed-based FC datasets from 6 publications for the resting-state, and 29 datasets from 6 publications for the task-based studies. The meta-analysis of TBSS FA revealed that PWS exhibited FA reductions in the middle and posterior segments of the left superior longitudinal fasciculus. Furthermore, the analysis of resting-state FC demonstrated that PWS had reduced FC in the right supplementary motor area and inferior parietal cortex, whereas an increase in FC was observed in the left cerebellum crus I. Conversely, we observed increased FC for task-based FC in regions implicated in speech production or sequential movements, including the anterior cingulate cortex, posterior insula, and bilateral cerebellum crus I in PWS. Functional network characterization of the altered FCs revealed that the sets of reduced resting-state and increased task-based FCs were largely distinct, but the somatomotor and striatum/thalamus networks were foci of alterations in both conditions. These observations indicate that developmental stuttering is characterized by structural and functional alterations in multiple brain networks that support speech fluency or sequential motor processes, including cortico-cortical and subcortical connections.
Collapse
Affiliation(s)
- Kengo Matsuhashi
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | | |
Collapse
|
7
|
Ramawat S, Marc IB, Ceccarelli F, Ferrucci L, Bardella G, Ferraina S, Pani P, Brunamonti E. The transitive inference task to study the neuronal correlates of memory-driven decision making: A monkey neurophysiology perspective. Neurosci Biobehav Rev 2023; 152:105258. [PMID: 37268179 DOI: 10.1016/j.neubiorev.2023.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A vast amount of literature agrees that rank-ordered information as A>B>C>D>E>F is mentally represented in spatially organized schemas after learning. This organization significantly influences the process of decision-making, using the acquired premises, i.e. deciding if B is higher than D is equivalent to comparing their position in this space. The implementation of non-verbal versions of the transitive inference task has provided the basis for ascertaining that different animal species explore a mental space when deciding among hierarchically organized memories. In the present work, we reviewed several studies of transitive inference that highlighted this ability in animals and, consequently, the animal models developed to study the underlying cognitive processes and the main neural structures supporting this ability. Further, we present the literature investigating which are the underlying neuronal mechanisms. Then we discuss how non-human primates represent an excellent model for future studies, providing ideal resources for better understanding the neuronal correlates of decision-making through transitive inference tasks.
Collapse
Affiliation(s)
- Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | | | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|