1
|
Stein J, Korb FM, Goschke T, Zwosta K. Salience network resting-state functional connectivity predicts self-controlled decision-making. Sci Rep 2025; 15:16332. [PMID: 40348817 PMCID: PMC12065794 DOI: 10.1038/s41598-025-98673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Salience network functional integration with the central executive network and the default mode network at rest has been shown to predict real-life self-control. It has been proposed that a network interaction index reflecting stronger functional integration of the salience network with the central executive network and reduced functional connectivity of the salience network with the default mode network represents a trait neural correlate of successful self-control exertion. Here, we attempted to replicate this result using data from our own study where 121 participants completed an fMRI self-control task comprising real-life scenarios and data from a second study (N = 79) retrieved from OpenNeuro (dataset ID: ds002643) where participants completed an fMRI food choice task. We could not replicate the proposed role of salience network resting-state functional connectivity in self-controlled decision-making in either of those data sets. Instead, we found evidence for the exact opposite effect, specifically a negative association between self-control performance and the network interaction index. The role of analysis pipelines, appropriate network ROIs, and the measurement of self-control are discussed in the context of our findings.
Collapse
Affiliation(s)
- Jasmin Stein
- Faculty of Psychology, TU Dresden, Dresden, D-01069, Germany.
| | | | - Thomas Goschke
- Faculty of Psychology, TU Dresden, Dresden, D-01069, Germany
| | | |
Collapse
|
2
|
Boisvert M, Dugré JR, Potvin S. Patterns of abnormal activations in severe mental disorders a transdiagnostic data-driven meta-analysis of task-based fMRI studies. Psychol Med 2024; 54:1-12. [PMID: 39397677 PMCID: PMC11536122 DOI: 10.1017/s003329172400165x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Studies suggest severe mental disorders (SMDs), such as schizophrenia, major depressive disorder and bipolar disorder, are associated with common alterations in brain activity, albeit with a graded level of impairment. However, discrepancies between study findings likely to results from both small sample sizes and the use of different functional magnetic resonance imaging (fMRI) tasks. To address these issues, data-driven meta-analytic approach designed to identify homogeneous brain co-activity patterns across tasks was conducted to better characterize the common and distinct alterations between these disorders. METHODS A hierarchical clustering analysis was conducted to identify groups of studies reporting similar neuroimaging results, independent of task type and psychiatric diagnosis. A traditional meta-analysis (activation likelihood estimation) was then performed within each of these groups of studies to extract their aberrant activation maps. RESULTS A total of 762 fMRI study contrasts were targeted, comprising 13 991 patients with SMDs. Hierarchical clustering analysis identified 5 groups of studies (meta-analytic groupings; MAGs) being characterized by distinct aberrant activation patterns across SMDs: (1) emotion processing; (2) cognitive processing; (3) motor processes, (4) reward processing, and (5) visual processing. While MAG1 was mostly commonly impaired, MAG2 was more impaired in schizophrenia, while MAG3 and MAG5 revealed no differences between disorder. MAG4 showed the strongest between-diagnoses differences, particularly in the striatum, posterior cingulate cortex, and ventromedial prefrontal cortex. CONCLUSIONS SMDs are characterized mostly by common deficits in brain networks, although differences between disorders are also present. This study highlights the importance of studying SMDs simultaneously rather than independently.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Faculty of medicine, University of Montreal, Montreal, Canada
| | - Jules R. Dugré
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Faculty of medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
3
|
Jüllig AK, Hebib S, Metzker H, Gruber E, Gruber O. Task-induced deactivation dysfunction during reward processing is associated with low self-esteem in a possible subtype of major depression. Brain Behav 2024; 14:e3545. [PMID: 38873863 DOI: 10.1002/brb3.3545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Low self-esteem is a frequent symptom in major depressive disorder (MDD). This functional magnetic resonance imaging study investigated whether MDD patients with low self-esteem show a distinct neural pathophysiology. Previous studies linked low self-esteem to reduced task-induced deactivation of the pregenual anterior cingulate cortex (pgACC) as a part of the default mode network, and to reduced connectivity between pgACC and reward system. Goya-Maldonado et al. identified an MDD subtype with pgACC and ventral striatal overactivations during reward processing. We hypothesized that this subtype might be characterized by low self-esteem. METHODS Eighty-three MDD patients performed the desire-reason dilemma task and completed the Rosenberg Self-Esteem Scale (RSES). Brain activity during bottom-up reward processing was regressed upon the RSES scores, controlling for depression severity measured by the Montgomery-Åsberg Depression Rating Scale. To corroborate the findings, we compared self-esteem scores between patient subgroups with impaired task-induced deactivation (n = 31) and with preserved task-induced deactivation (n = 31) of the pgACC. RESULTS Consistent with our a priori hypothesis, activity in a bilateral fronto-striatal network including pgACC and ventral striatum correlated negatively with RSES scores, also when controlling for depression severity. In the additional analysis, patients with impaired task-induced pgACC deactivation showed lower self-esteem (t (52.82) = -2.27; p = .027, d = 0.58) compared to those with preserved task-induced pgACC deactivation. CONCLUSIONS We conclude that low self-esteem in MDD patients is linked to a task-induced deactivation dysfunction of the pgACC. Our findings suggest that a previously described possible subtype of MDD with pgACC and ventral striatal overactivations during reward processing is clinically characterized by low self-esteem.
Collapse
Affiliation(s)
- Antonia K Jüllig
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandi Hebib
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Helena Metzker
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Park SH, Michael AM, Baker AK, Lei C, Martucci KT. Enhanced motor network engagement during reward gain anticipation in fibromyalgia. Cortex 2024; 173:161-174. [PMID: 38417389 PMCID: PMC10963137 DOI: 10.1016/j.cortex.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 03/01/2024]
Abstract
Reward motivation is essential in shaping human behavior and cognition. Both reward motivation and reward brain circuits are altered in chronic pain conditions, including fibromyalgia. In this study of fibromyalgia patients, we used a data-driven independent component analysis (ICA) approach to investigate how brain networks contribute to altered reward processing. From females with fibromyalgia (N = 24) and female healthy controls (N = 24), we acquired fMRI data while participants performed a monetary incentive delay (MID) reward task. After analyzing the task-based fMRI data using ICA to identify networks, we analyzed 3 networks of interest: motor network (left), value-driven attention network, and basal ganglia network. Then, we evaluated correlation coefficients between each network timecourse versus a task-based timecourse which modeled gain anticipation. Compared to controls, the fibromyalgia cohort demonstrated significantly stronger correlation between the left motor network timecourse and the gain anticipation timecourse, indicating the left motor network was more engaged with gain anticipation in fibromyalgia. In an exploratory analysis, we compared motor network engagement during early versus late phases of gain anticipation. Across cohorts, greater motor network engagement (i.e., stronger correlation between network and gain anticipation) occurred during the late timepoint, which reflected enhanced motor preparation immediately prior to response. Consistent with the main results, patients exhibited greater engagement of the motor network during both early and late phases compared with healthy controls. Visual-attention and basal ganglia networks revealed similar engagement in the task across groups. As indicated by post-hoc analyses, motor network engagement was positively related to anxiety and negatively related to reward responsiveness. In summary, we identified enhanced reward-task related engagement of the motor network in fibromyalgia using a novel data-driven ICA approach. Enhanced motor network engagement in fibromyalgia may relate to impaired reward motivation, heightened anxiety, and possibly to altered motor processing, such as restricted movement or dysregulated motor planning.
Collapse
Affiliation(s)
- Su Hyoun Park
- Department of Anesthesiology, Human Affect and Pain Neuroscience Laboratory, Duke University School of Medicine, Durham, NC, USA; Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Andrew M Michael
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Anne K Baker
- Department of Anesthesiology, Human Affect and Pain Neuroscience Laboratory, Duke University School of Medicine, Durham, NC, USA; Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Carina Lei
- Department of Anesthesiology, Human Affect and Pain Neuroscience Laboratory, Duke University School of Medicine, Durham, NC, USA; Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Katherine T Martucci
- Department of Anesthesiology, Human Affect and Pain Neuroscience Laboratory, Duke University School of Medicine, Durham, NC, USA; Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Zaff O, Wyngaarden JB, Dennison JB, Sazhin D, Chein J, McCloskey M, Alloy LB, Jarcho JM, Smith DV, Fareri DS. Social Context and Reward Sensitivity Enhance Corticostriatal Function during Experiences of Shared Rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562908. [PMID: 37905048 PMCID: PMC10614966 DOI: 10.1101/2023.10.19.562908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Although prior research has demonstrated enhanced striatal response when sharing rewards with close social connections, less is known about how individual differences affect ventral striatal (VS) activation and connectivity when experiencing rewards within social contexts. Given that self-reported reward sensitivity and level of substance use have been associated with differences in VS activation, we set out to investigate whether these factors would be independently associated with enhancements to neural reward responses within social contexts. In this pre-registered study, participants (N=45) underwent fMRI while playing a card guessing game in which correct or incorrect guesses resulted in monetary gains and losses that were shared evenly with either a close friend, stranger (confederate), or non-human partner. Consistent with our prior work, we found increased VS activation when sharing rewards with a socially close peer as opposed to an out-of-network stranger. As self-reported reward sensitivity increased, the difference in VS response to rewards shared with friends and strangers decreased. We also found enhanced connectivity between the VS and temporoparietal junction when sharing rewards with close friends as opposed to strangers. Finally, exploratory analyses revealed that as reward sensitivity and sub-clinical substance use increase, the difference in VS connectivity with the right fusiform face area increases as a function of social context. These findings demonstrate that responsivity to the context of close friends may be tied to individual reward sensitivity or sub-clinical substance use habits; together these factors may inform predictions of risk for future mental health disorders.
Collapse
Affiliation(s)
- Ori Zaff
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - James B. Wyngaarden
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jeffrey B. Dennison
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jason Chein
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Michael McCloskey
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Lauren B. Alloy
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Johanna M. Jarcho
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V. Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Dominic S. Fareri
- Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
6
|
Varma MM, Zhen S, Yu R. Not all discounts are created equal: Regional activity and brain networks in temporal and effort discounting. Neuroimage 2023; 280:120363. [PMID: 37673412 DOI: 10.1016/j.neuroimage.2023.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023] Open
Abstract
Reward outcomes associated with costs like time delay and effort investment are generally discounted in decision-making. Standard economic models predict rewards associated with different types of costs are devalued in a similar manner. However, our review of rodent lesion studies indicated partial dissociations between brain regions supporting temporal- and effort-based decision-making. Another debate is whether options involving low and high costs are processed in different brain substrates (dual-system) or in the same regions (single-system). This research addressed these issues using coordinate-based, connectivity-based, and activation network-based meta-analyses to identify overlapping and separable neural systems supporting temporal (39 studies) and effort (20 studies) discounting. Coordinate-based activation likelihood estimation and resting-state connectivity analyses showed immediate-small reward and delayed-large reward choices engaged distinct regions with unique connectivity profiles, but their activation network mapping was found to engage the default mode network. For effort discounting, salience and sensorimotor networks supported low-effort choices, while the frontoparietal network supported high-effort choices. There was little overlap between the temporal and effort networks. Our findings underscore the importance of differentiating different types of costs in decision-making and understanding discounting at both regional and network levels.
Collapse
Affiliation(s)
- Mohith M Varma
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Zhen
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, China.
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
Liu D, Munoz F, Sanatkhani S, Pouliopoulos AN, Konofagou EE, Grinband J, Ferrera VP. Alteration of functional connectivity in the cortex and major brain networks of non-human primates following focused ultrasound exposure in the dorsal striatum. Brain Stimul 2023; 16:1196-1204. [PMID: 37558125 PMCID: PMC10530553 DOI: 10.1016/j.brs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Focused ultrasound (FUS) is a non-invasive neuromodulation technology that is being investigated for potential treatment of neurological and psychiatric disorders. FUS combined with microbubbles can temporarily open the intact blood-brain barrier (BBB) of animals and humans, and facilitate drug delivery. FUS exposure, either with or without microbubbles, has been demonstrated to alter the behavior of non-human primates (NHP), and previous studies have demonstrated the transient and long-term effects of FUS neuromodulation on functional connectivity using resting state functional MRI. The behavioral effects of FUS vary depending on whether or not it is applied in conjunction with microbubbles to open the BBB, but it is unknown whether opening the BBB affects functional connectivity differently than FUS alone. OBJECTIVE To compare the effects of applying FUS alone (FUS neuromodulation) and FUS with microbubbles (FUS-BBB opening) on changes of resting state functional connectivity in NHP. METHODS We applied 2 min FUS exposure without (neuromodulation) and with microbubbles (BBB opening) in the dorsal striatum of lightly anesthetized non-human primates, and acquired resting state functional MRI 40 min respectively after FUS exposure. The functional connectivity (FC) in the cortex and major brain networks between the two approaches were measured and compared. RESULTS When applying FUS exposure to the caudate nucleus of NHP, we found that both FUS neuromodulation can activate FC between caudate and insular cortex, while inhibiting the FC between caudate and motor cortex. FUS-BBB opening can activate FC between the caudate and medial prefrontal cortex, and within the frontotemporal network (FTN). We also found both FUS and FUS-BBB opening can significantly activate FC within the default mode network (DMN). CONCLUSION The results suggest applying FUS to a deep brain structure can alter functional connectivity in the DMN and FTN, and that FUS neuromodulation and FUS-mediated BBB opening can have different effects on patterns of functional connectivity.
Collapse
Affiliation(s)
- Dong Liu
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA.
| | - Fabian Munoz
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - Soroosh Sanatkhani
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - Antonios N Pouliopoulos
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering & Imaging Science, King's College London, UK
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, USA; Department of Radiology, Columbia University, USA
| | - Jack Grinband
- Department of Radiology, Columbia University, USA; Department of Psychiatry, Columbia University, USA
| | - Vincent P Ferrera
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA; Department of Psychiatry, Columbia University, USA
| |
Collapse
|
8
|
Liu D, Munoz F, Sanatkhani S, Pouliopoulos AN, Konofagou E, Grinband J, VP F. Alteration of functional connectivity in the cortex and major brain networks of non-human primates following focused ultrasound exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528741. [PMID: 36824864 PMCID: PMC9949083 DOI: 10.1101/2023.02.16.528741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Focused ultrasound (FUS) is a non-invasive neuromodulation technology that is being investigated for potential treatment of neurological and psychiatric disorders. Focused ultrasound combined with microbubbles can temporarily open the intact blood-brain barrier (BBB) of animals and humans, and facilitate drug delivery. FUS exposure, either with or without microbubbles, has been demonstrated to alter the behavior of non-human primates, and previous work has demonstrated transient and long-term effects of FUS neuromodulation on functional connectivity using resting state functional MRI. However, it is unknown whether opening the BBB affects functional connectivity differently than FUS alone. Thus we applied FUS alone (neuromodulation) and FUS with microbubbles (BBB opening) in the dorsal striatum of lightly anesthetized non-human primates, and compared changes in functional connectivity in major brain networks. We found different alteration patterns between FUS neuromodulation and FUS-mediated BBB opening in several cortical areas, and we also found that applying FUS to a deep brain structure can alter functional connectivity in the default mode network and frontotemporal network.
Collapse
Affiliation(s)
- D Liu
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - F Munoz
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - S Sanatkhani
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - A N Pouliopoulos
- Dept. of Surgical & Interventional Engineering, School of Biomedical Engineering & Imaging Science, King’s College London, UK
| | - E Konofagou
- Dept. of Biomedical Engineering, Columbia University, USA
- Dept. of Radiology, Columbia University, USA
| | - J Grinband
- Dept. of Radiology, Columbia University, USA
- Dept. of Psychiatry, Columbia University, USA
| | - Ferrera VP
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
- Dept. of Psychiatry, Columbia University, USA
| |
Collapse
|