1
|
Hochreuter K, Buti G, Ajdari A, Bridge CP, Sharp GC, Jespersen S, Lukacova S, Bortfeld T, Kallehauge JF. Investigating the potential of diffusion tensor atlases to generate anisotropic clinical tumor volumes in glioblastoma patients. Phys Imaging Radiat Oncol 2025; 33:100688. [PMID: 39866246 PMCID: PMC11758580 DOI: 10.1016/j.phro.2024.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
Background and purpose Diffusion tensor imaging (DTI) has been proposed to guide the anisotropic expansion from gross tumor volume to clinical target volume (CTV), aiming to integrate known tumor spread patterns into the CTV. This study investigate the potential of using a DTI atlas as an alternative to patient-specific DTI for generating anisotropic CTVs. Materials and Methods The dataset consisted of twenty-eight newly diagnosed glioblastoma patients from a Danish national DTI protocol with post-operative T1-contrast and DTI imaging. Three different DTI atlases, spatially aligned to the patient images using deformable image registration, were considered as alternatives. Anisotropic CTVs were constructed to match the volume of a 15 mm isotropic expansion by generating 3D distance maps using either patient- or atlas-DTI as input to the shortest path solver. The degree of CTV anisotropy was controlled by the migration ratio, modeling tumor cell migration along the dominant white matter fiber direction extracted from DTI. The similarity between patient- and atlas-DTI CTVs was analyzed using the Dice Similarity Coefficient (DSC), with significance testing according to a Wilcoxon test. Results The median (range) DSC between anisotropic CTVs generated using patient-specific and atlas-based DTI was 0.96 (0.93-0.97), 0.96 (0.93-0.97), and 0.95 (0.93-0.97) for the three atlases, respectively (p > 0.01), for a migration ratio of 10. The results remained consistent over the range of studied migration ratios (2 to 100). Conclusion The high degree of similarity between all anisotropic CTVs indicates that atlas-DTI is a viable replacement for patient-specific DTI for incorporating fiber direction into the CTV.
Collapse
Affiliation(s)
- Kim Hochreuter
- Aarhus University Hospital, Danish Centre for Particle Therapy, Palle Juul-Jensens Blvd. 25, 8200 Aarhus, Denmark
- Aarhus University, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 82, 8200 Aarhus, Denmark
| | - Gregory Buti
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Christopher P. Bridge
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Charlestown, MA 02129, USA
| | - Gregory C. Sharp
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Sune Jespersen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Slávka Lukacova
- Aarhus University, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 82, 8200 Aarhus, Denmark
- Aarhus University Hospital, Department of Oncology, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Jesper F. Kallehauge
- Aarhus University Hospital, Danish Centre for Particle Therapy, Palle Juul-Jensens Blvd. 25, 8200 Aarhus, Denmark
- Aarhus University, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 82, 8200 Aarhus, Denmark
| |
Collapse
|
2
|
Wu Y, Ridwan AR, Niaz MR, Bennett DA, Arfanakis K. High resolution 0.5mm isotropic T 1-weighted and diffusion tensor templates of the brain of non-demented older adults in a common space for the MIITRA atlas. Neuroimage 2023; 282:120387. [PMID: 37783362 PMCID: PMC10625170 DOI: 10.1016/j.neuroimage.2023.120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
High quality, high resolution T1-weighted (T1w) and diffusion tensor imaging (DTI) brain templates located in a common space can enhance the sensitivity and precision of template-based neuroimaging studies. However, such multimodal templates have not been constructed for the older adult brain. The purpose of this work which is part of the MIITRA atlas project was twofold: (A) to develop 0.5 mm isotropic resolution T1w and DTI templates that are representative of the brain of non-demented older adults and are located in the same space, using advanced multimodal template construction techniques and principles of super resolution on data from a large, diverse, community cohort of 400 non-demented older adults, and (B) to systematically compare the new templates to other standardized templates. It was demonstrated that the new MIITRA-0.5mm T1w and DTI templates are well-matched in space, exhibit good definition of brain structures, including fine structures, exhibit higher image sharpness than other standardized templates, and are free of artifacts. The MIITRA-0.5mm T1w and DTI templates allowed higher intra-modality inter-subject spatial normalization precision as well as higher inter-modality intra-subject spatial matching of older adult T1w and DTI data compared to other available templates. Consequently, MIITRA-0.5mm templates allowed detection of smaller inter-group differences for older adult data compared to other templates. The MIITRA-0.5mm templates were also shown to be most representative of the brain of non-demented older adults compared to other templates with submillimeter resolution. The new templates constructed in this work constitute two of the final products of the MIITRA atlas project and are anticipated to have important implications for the sensitivity and precision of studies on older adults.
Collapse
Affiliation(s)
- Yingjuan Wu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Abdur Raquib Ridwan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Mohammad Rakeen Niaz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
3
|
Pieciak T, París G, Beck D, Maximov II, Tristán-Vega A, de Luis-García R, Westlye LT, Aja-Fernández S. Spherical means-based free-water volume fraction from diffusion MRI increases non-linearly with age in the white matter of the healthy human brain. Neuroimage 2023; 279:120324. [PMID: 37574122 DOI: 10.1016/j.neuroimage.2023.120324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
The term free-water volume fraction (FWVF) refers to the signal fraction that could be found as the cerebrospinal fluid of the brain, which has been demonstrated as a sensitive measure that correlates with cognitive performance and various neuropathological processes. It can be quantified by properly fitting the isotropic component of the magnetic resonance (MR) signal in diffusion-sensitized sequences. Using N=287 healthy subjects (178F/109M) aged 25-94, this study examines in detail the evolution of the FWVF obtained with the spherical means technique from multi-shell acquisitions in the human brain white matter across the adult lifespan, which has been previously reported to exhibit a positive trend when estimated from single-shell data using the bi-tensor signal representation. We found evidence of a noticeably non-linear gain after the sixth decade of life, with a region-specific variate and varying change rate of the spherical means-based multi-shell FWVF parameter with age, at the same time, a heteroskedastic pattern across the adult lifespan is suggested. On the other hand, the FW corrected diffusion tensor imaging (DTI) leads to a region-dependent flattened age-related evolution of the mean diffusivity (MD) and fractional anisotropy (FA), along with a considerable reduction in their variability, as compared to the studies conducted over the standard (single-component) DTI. This way, our study provides a new perspective on the trajectory-based assessment of the brain and explains the conceivable reason for the variations observed in FA and MD parameters across the lifespan with previous studies under the standard diffusion tensor imaging.
Collapse
Affiliation(s)
- Tomasz Pieciak
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Guillem París
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway. https://twitter.com/_DaniBeck
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Antonio Tristán-Vega
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Rodrigo de Luis-García
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway. https://twitter.com/larswestlye
| | - Santiago Aja-Fernández
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain. https://twitter.com/SantiagoAjaFer1
| |
Collapse
|