1
|
Zhang L, Guo L, Liu X, Han J, Zhu Y, Ma C, Li Y, Ye W. Low-frequency rTMS modulates small-world network properties in an AVH-related brain network in schizophrenia. Front Psychiatry 2025; 16:1578072. [PMID: 40303447 PMCID: PMC12037504 DOI: 10.3389/fpsyt.2025.1578072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Auditory verbal hallucinations (AVH) are a core symptom of schizophrenia, often persisting despite pharmacological treatment. Repetitive transcranial magnetic stimulation (rTMS), particularly low-frequency rTMS targeting the left temporoparietal junction (TPJ), has shown promise in alleviating AVH symptoms by modulating dysfunctional brain connectivity. However, the network-level effects of rTMS remain incompletely understood, particularly in terms of small-world network properties, which provide insights into local and global network efficiency. Furthermore, most previous studies have analyzed whole-brain networks, lacking specificity regarding disease-relevant circuits. Objective This study aimed to investigate how low-frequency rTMS modulates the small-world network properties of a refined AVH-related network composed of 35 brain regions specifically implicated in hallucination generation and rTMS treatment effects, thereby providing a more targeted perspective on network reorganization. Healthy controls (HCs) were included as a reference to determine whether rTMS normalizes network alterations in schizophrenia. Additionally, a responder vs. non-responder analysis was conducted to assess individual variability in treatment response. Methods A total of 50 schizophrenia patients with persistent AVH underwent 15 sessions of 1 Hz rTMS over the left TPJ. Resting-state fMRI data were collected before and after treatment to assess functional connectivity within the predefined 35-region AVH-related network. small-worldness (σ), normalized clustering coefficient (γ), and normalized characteristic path length (λ), as well as functional segregation (clustering coefficient [Cp], local efficiency [El]) and functional integration (global efficiency [Eg], characteristic path length [Lp])-were analyzed before and after rTMS. Clinical symptom severity was assessed using the Auditory Hallucination Rating Scale (AHRS). Results At baseline, schizophrenia patients exhibited disrupted small-world properties, with significantly lower σ, Cp, El, and Eg compared to healthy controls, reflecting impaired network organization, reduced local clustering, and inefficient global communication. Following rTMS, small-worldness (σ), local efficiency (El), and global efficiency (Eg) showed significant improvement, suggesting partial restoration of network efficiency. Functional connectivity analyses revealed significant reductions in hyperconnectivity between the right middle temporal gyrus (MTG) and superior putamen, as well as between the left TPJ and left lateral prefrontal cortex (LPFC). Notably, responders showed greater connectivity changes, which were correlated with AVH severity reduction, highlighting the role of network modulation in treatment response. Conclusion These findings support the network dysregulation model of AVH in schizophrenia and demonstrate that rTMS can modulate AVH-related connectivity, partially restoring network efficiency. The inclusion of HCs provides evidence that rTMS-induced changes align with normative network patterns, and the responder analysis suggests that connectivity modulation is linked to clinical improvement. This study offers new insights into the neurobiological mechanisms of rTMS treatment and underscores the need for biomarker-driven, individualized neuromodulation strategies for schizophrenia.
Collapse
Affiliation(s)
- Lin Zhang
- Tenth Outpatient Department, 986th Hospital, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Li Guo
- Tenth Outpatient Department, 986th Hospital, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaohui Liu
- Department of Psychology, 986th Hospital, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jing Han
- Tenth Outpatient Department, 986th Hospital, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chaozong Ma
- Military Medical Psychology School, Air Force Medical University, Xi’an, China
| | - Ye Li
- No. 968 Hospital of Chinese People’s Liberation Army, Jinzhou, China
| | - Weiliang Ye
- Department of Pharmaceutics, School of Pharmacy, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Liu S, Yan X, Guo X, Qi S, Wang H, Chang X. Federated Bayesian network learning from multi-site data. J Biomed Inform 2025; 163:104784. [PMID: 39909179 DOI: 10.1016/j.jbi.2025.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE Identifying functional connectivity biomarkers of major depressive disorder (MDD) patients is essential to advance the understanding of disorder mechanisms and early intervention. Multi-site data arise naturally which could enhance the statistical power of single-site-based methods. However, the main concern is the inter-site heterogeneity and data sharing barriers between different sites. Our objective is to overcome these barriers to learn multiple Bayesian networks (BNs) from rs-fMRI data. METHODS We propose a federated joint estimator and the corresponding optimization algorithm, called NOTEARS-PFL. Specifically, we incorporate both shared and site-specific information into NOTEARS-PFL by utilizing the sparse group lasso penalty. Addressing data-sharing constraint, we develop the alternating direction method of multipliers for the optimization of NOTEARS-PFL. This entails processing neuroimaging data locally at each site, followed by the transmission of the learned network structures for central global updates. RESULTS The effectiveness and accuracy of the NOTEARS-PFL method are validated through its application on both synthetic and real-world multi-site resting-state functional magnetic resonance imaging (rs-fMRI) datasets. This demonstrates its superior efficiency and precision in comparison to alternative approaches. CONCLUSION We proposed a toolbox called NOTEARS-PFL to learn the heterogeneous brain functional connectivity in MDD patients using multi-site data efficiently and with the data sharing constraint. The comprehensive experiments on both synthetic data and real-world multi-site rs-fMRI datasets with MDD highlight the excellent efficacy of our proposed method.
Collapse
Affiliation(s)
- Shuai Liu
- School of Management, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Yan
- School of Management, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Guo
- School of Mathematics, Northwest University, Xi'an 710127, China.
| | - Shun Qi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiangyu Chang
- School of Management, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Yi C, Li F, Wang J, Li Y, Zhang J, Chen W, Jiang L, Yao D, Xu P, He B, Dong W. Abnormal trial-to-trial variability in P300 time-varying directed eeg network of schizophrenia. Med Biol Eng Comput 2024; 62:3327-3341. [PMID: 38834855 DOI: 10.1007/s11517-024-03133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH "noisy" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.
Collapse
Affiliation(s)
- Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, 2019RU035, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Jiuju Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiamin Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wanjun Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, 2019RU035, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
4
|
Zhang A, Zhang G, Cai B, Wilson TW, Stephen JM, Calhoun VD, Wang YP. A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence. Netw Neurosci 2024; 8:791-807. [PMID: 39355441 PMCID: PMC11349030 DOI: 10.1162/netn_a_00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Emotion perception is essential to affective and cognitive development which involves distributed brain circuits. Emotion identification skills emerge in infancy and continue to develop throughout childhood and adolescence. Understanding the development of the brain's emotion circuitry may help us explain the emotional changes during adolescence. In this work, we aim to deepen our understanding of emotion-related functional connectivity (FC) from association to causation. We proposed a Bayesian incorporated linear non-Gaussian acyclic model (BiLiNGAM), which incorporated association model into the estimation pipeline. Simulation results indicated stable and accurate performance over various settings, especially when the sample size was small. We used fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) to validate the approach. It included 855 individuals aged 8-22 years who were divided into five different adolescent stages. Our network analysis revealed the development of emotion-related intra- and intermodular connectivity and pinpointed several emotion-related hubs. We further categorized the hubs into two types: in-hubs and out-hubs, as the center of receiving and distributing information, respectively. In addition, several unique developmental hub structures and group-specific patterns were discovered. Our findings help provide a directed FC template of brain network organization underlying emotion processing during adolescence.
Collapse
Affiliation(s)
- Aiying Zhang
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Gemeng Zhang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Biao Cai
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
5
|
Xia Z, Zhou T, Jiao Z, Lu J. Learnable Brain Connectivity Structures for Identifying Neurological Disorders. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3084-3094. [PMID: 39163174 DOI: 10.1109/tnsre.2024.3446588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Brain networks/graphs have been widely recognized as powerful and efficient tools for identifying neurological disorders. In recent years, various graph neural network models have been developed to automatically extract features from brain networks. However, a key limitation of these models is that the inputs, namely brain networks/graphs, are constructed using predefined statistical metrics (e.g., Pearson correlation) and are not learnable. The lack of learnability restricts the flexibility of these approaches. While statistically-specific brain networks can be highly effective in recognizing certain diseases, their performance may not exhibit robustness when applied to other types of brain disorders. To address this issue, we propose a novel module called Brain Structure Inference (termed BSI), which can be seamlessly integrated with multiple downstream tasks within a unified framework, enabling end-to-end training. It is highly flexible to learn the most beneficial underlying graph structures directly for specific downstream tasks. The proposed method achieves classification accuracies of 74.83% and 79.18% on two publicly available datasets, respectively. This suggests an improvement of at least 3% over the best-performing existing methods for both tasks. In addition to its excellent performance, the proposed method is highly interpretable, and the results are generally consistent with previous findings.
Collapse
|
6
|
Bagheri A, Pasande M, Bello K, Araabi BN, Akhondi-Asl A. Discovering the effective connectome of the brain with dynamic Bayesian DAG learning. Neuroimage 2024; 297:120684. [PMID: 38880310 DOI: 10.1016/j.neuroimage.2024.120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the complex mechanisms of the brain can be unraveled by extracting the Dynamic Effective Connectome (DEC). Recently, score-based Directed Acyclic Graph (DAG) discovery methods have shown significant improvements in extracting the causal structure and inferring effective connectivity. However, learning DEC through these methods still faces two main challenges: one with the fundamental impotence of high-dimensional dynamic DAG discovery methods and the other with the low quality of fMRI data. In this paper, we introduce Bayesian Dynamic DAG learning with M-matrices Acyclicity characterization (BDyMA) method to address the challenges in discovering DEC. The presented dynamic DAG enables us to discover direct feedback loop edges as well. Leveraging an unconstrained framework in the BDyMA method leads to more accurate results in detecting high-dimensional networks, achieving sparser outcomes, making it particularly suitable for extracting DEC. Additionally, the score function of the BDyMA method allows the incorporation of prior knowledge into the process of dynamic causal discovery which further enhances the accuracy of results. Comprehensive simulations on synthetic data and experiments on Human Connectome Project (HCP) data demonstrate that our method can handle both of the two main challenges, yielding more accurate and reliable DEC compared to state-of-the-art and traditional methods. Additionally, we investigate the trustworthiness of DTI data as prior knowledge for DEC discovery and show the improvements in DEC discovery when the DTI data is incorporated into the process.
Collapse
Affiliation(s)
- Abdolmahdi Bagheri
- School of Electrical and Computer Engineering, University of Tehran, College of Engineering, Tehran, Iran.
| | - Mohammad Pasande
- School of Electrical and Computer Engineering, University of Tehran, College of Engineering, Tehran, Iran
| | - Kevin Bello
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
| | - Babak Nadjar Araabi
- School of Electrical and Computer Engineering, University of Tehran, College of Engineering, Tehran, Iran
| | | |
Collapse
|
7
|
Guo Y, Wu X, Sun Y, Dong Y, Sun J, Song Z, Xiang J, Cui X. Abnormal Dynamic Reconstruction of Overlapping Communities in Schizophrenia Patients. Brain Sci 2024; 14:783. [PMID: 39199476 PMCID: PMC11352520 DOI: 10.3390/brainsci14080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE This study aims to explore the changes in dynamic overlapping communities in the brains of schizophrenia (SZ) patients and further investigate the dynamic restructuring patterns of overlapping communities in SZ patients. MATERIALS AND METHODS A total of 43 SZ patients and 49 normal controls (NC) were selected for resting-state functional MRI (rs-fMRI) scans. Dynamic functional connectivity analysis was conducted separately on SZ patients and NC using rs-fMRI and Jackknife Correlation techniques to construct dynamic brain network models. Based on these models, a dynamic overlapping community detection method was utilized to explore the abnormal overlapping community structure in SZ patients using evaluation metrics such as the structural stability of overlapping communities, nodes' functional diversity, and activity level of overlapping communities. RESULTS The stability of communities in SZ patients showed a decreasing trend. The changes in the overlapping community structure of SZ patients may be related to a decrease in the diversity of overlapping node functions. Additionally, compared to the NC group, the activity level of overlapping communities of SZ patients was significantly reduced. CONCLUSION The structure or organization of the brain functional network in SZ patients is abnormal or disrupted, and the activity of the brain network in information processing and transmission is weakened in SZ patients.
Collapse
Affiliation(s)
- Yuxiang Guo
- School of Software, Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China;
| | - Xubin Wu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Yumeng Sun
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Yanqing Dong
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Jie Sun
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Zize Song
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| |
Collapse
|
8
|
Samantaray T, Saini J, Pal PK, Gupta CN. Brain connectivity for subtypes of parkinson's disease using structural MRI. Biomed Phys Eng Express 2024; 10:025012. [PMID: 38224618 DOI: 10.1088/2057-1976/ad1e77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Objective. Delineating Parkinson's disease (PD) into distinct subtypes is a major challenge. Most studies use clinical symptoms to label PD subtypes while our work uses an imaging-based data-mining approach to subtype PD. Our study comprises two major objectives - firstly, subtyping Parkinson's patients based on grey matter information from structural magnetic resonance imaging scans of human brains; secondly, comparative structural brain connectivity analysis of PD subtypes derived from the former step.Approach. Source-based-morphometry decomposition was performed on 131 Parkinson's patients and 78 healthy controls from PPMI dataset, to derive at components (regions) with significance in disease and high effect size. The loading coefficients of significant components were thresholded for arriving at subtypes. Further, regional grey matter maps of subtype-specific subjects were separately parcellated and employed for construction of subtype-specific association matrices using Pearson correlation. These association matrices were binarized using sparsity threshold and leveraged for structural brain connectivity analysis using network metrics.Main results. Two distinct Parkinson's subtypes (namely A and B) were detected employing loadings of two components satisfying the selection criteria, and a third subtype (AB) was detected, common to these two components. Subtype A subjects were highly weighted in inferior, middle and superior frontal gyri while subtype B subjects in inferior, middle and superior temporal gyri. Network metrics analyses through permutation test revealed significant inter-subtype differences (p < 0.05) in clustering coefficient, local efficiency, participation coefficient and betweenness centrality. Moreover, hubs were obtained using betweenness centrality and mean network degree.Significance. MRI-based data-driven subtypes show frontal and temporal lobes playing a key role in PD. Graph theory-driven brain network analyses could untangle subtype-specific differences in structural brain connections showing differential network architecture. Replication of these initial results in other Parkinson's datasets may be explored in future. Clinical Relevance- Investigating structural brain connections in Parkinson's disease may provide subtype-specific treatment.
Collapse
Affiliation(s)
- Tanmayee Samantaray
- Neural Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neuro Sciences, Bengaluru, 560029, India
| | - Cota Navin Gupta
- Neural Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| |
Collapse
|
9
|
Bagheri A, Dehshiri M, Bagheri Y, Akhondi-Asl A, Nadjar Araabi B. Brain effective connectome based on fMRI and DTI data: Bayesian causal learning and assessment. PLoS One 2023; 18:e0289406. [PMID: 37594972 PMCID: PMC10437876 DOI: 10.1371/journal.pone.0289406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
Neuroscientific studies aim to find an accurate and reliable brain Effective Connectome (EC). Although current EC discovery methods have contributed to our understanding of brain organization, their performances are severely constrained by the short sample size and poor temporal resolution of fMRI data, and high dimensionality of the brain connectome. By leveraging the DTI data as prior knowledge, we introduce two Bayesian causal discovery frameworks -the Bayesian GOLEM (BGOLEM) and Bayesian FGES (BFGES) methods- that offer significantly more accurate and reliable ECs and address the shortcomings of the existing causal discovery methods in discovering ECs based on only fMRI data. Moreover, to numerically assess the improvement in the accuracy of ECs with our method on empirical data, we introduce the Pseudo False Discovery Rate (PFDR) as a new computational accuracy metric for causal discovery in the brain. Through a series of simulation studies on synthetic and hybrid data (combining DTI from the Human Connectome Project (HCP) subjects and synthetic fMRI), we demonstrate the effectiveness of our proposed methods and the reliability of the introduced metric in discovering ECs. By employing the PFDR metric, we show that our Bayesian methods lead to significantly more accurate results compared to the traditional methods when applied to the Human Connectome Project (HCP) data. Additionally, we measure the reproducibility of discovered ECs using the Rogers-Tanimoto index for test-retest data and show that our Bayesian methods provide significantly more reliable ECs than traditional methods. Overall, our study's numerical and visual results highlight the potential for these frameworks to significantly advance our understanding of brain functionality.
Collapse
Affiliation(s)
- Abdolmahdi Bagheri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahdi Dehshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Yamin Bagheri
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Alireza Akhondi-Asl
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Babak Nadjar Araabi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Orlichenko A, Qu G, Zhang G, Patel B, Wilson TW, Stephen JM, Calhoun VD, Wang YP. Latent Similarity Identifies Important Functional Connections for Phenotype Prediction. IEEE Trans Biomed Eng 2023; 70:1979-1989. [PMID: 37015625 PMCID: PMC10284019 DOI: 10.1109/tbme.2022.3232964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Endophenotypes such as brain age and fluid intelligence are important biomarkers of disease status. However, brain imaging studies to identify these biomarkers often encounter limited numbers of subjects but high dimensional imaging features, hindering reproducibility. Therefore, we develop an interpretable, multivariate classification/regression algorithm, called Latent Similarity (LatSim), suitable for small sample size but high feature dimension datasets. METHODS LatSim combines metric learning with a kernel similarity function and softmax aggregation to identify task-related similarities between subjects. Inter-subject similarity is utilized to improve performance on three prediction tasks using multi-paradigm fMRI data. A greedy selection algorithm, made possible by LatSim's computational efficiency, is developed as an interpretability method. RESULTS LatSim achieved significantly higher predictive accuracy at small sample sizes on the Philadelphia Neurodevelopmental Cohort (PNC) dataset. Connections identified by LatSim gave superior discriminative power compared to those identified by other methods. We identified 4 functional brain networks enriched in connections for predicting brain age, sex, and intelligence. CONCLUSION We find that most information for a predictive task comes from only a few (1-5) connections. Additionally, we find that the default mode network is over-represented in the top connections of all predictive tasks. SIGNIFICANCE We propose a novel prediction algorithm for small sample, high feature dimension datasets and use it to identify connections in task fMRI data. Our work can lead to new insights in both algorithm design and neuroscience research.
Collapse
|