1
|
van der Pal Z, Douw L, Genis A, van den Bergh D, Marsman M, Schrantee A, Blanken TF. Tell me why: A scoping review on the fundamental building blocks of fMRI-based network analysis. Neuroimage Clin 2025; 46:103785. [PMID: 40245454 DOI: 10.1016/j.nicl.2025.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Understanding complex brain-behaviour relationships in psychiatric and neurological conditions is crucial for advancing clinical insights. This review explores the current landscape of network estimation methods in the context of functional MRI (fMRI) based network neuroscience, focusing on static undirected network analysis. We focused on papers published in a single year (2022) and characterised what we consider the fundamental building blocks of network analysis: sample size, network size, association type, edge inclusion strategy, edge weights, modelling level, and confounding factors. We found that the most common methods across all included studies (n = 191) were the use of pairwise correlations to estimate the associations between brain regions (79.6 %), estimation of weighted networks (95.3 %), and estimation of the network at the individual level (86.9 %). Importantly, a substantial number of studies lacked comprehensive reporting on their methodological choices, hindering the synthesis of research findings within the field. This review underscores the critical need for careful consideration and transparent reporting of fMRI network estimation methodologies to advance our understanding of complex brain-behaviour relationships. By facilitating the integration between network neuroscience and network psychometrics, we aim to significantly enhance our clinical understanding of these intricate connections.
Collapse
Affiliation(s)
- Z van der Pal
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - L Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands
| | - A Genis
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - D van den Bergh
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - M Marsman
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - A Schrantee
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - T F Blanken
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands; University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 129, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Grazia A, Dyrba M, Pomara N, Temp AG, Grothe MJ, Teipel SJ. Basal forebrain global functional connectivity is preserved in asymptomatic presenilin-1 E280A mutation carriers: Results from the Colombia cohort. J Prev Alzheimers Dis 2025; 12:100030. [PMID: 39863323 DOI: 10.1016/j.tjpad.2024.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Imaging studies showed early atrophy of the cholinergic basal forebrain in prodromal sporadic Alzheimer's disease and reduced posterior basal forebrain functional connectivity in amyloid positive individuals with subjective cognitive decline. Similar investigations in familial cases of Alzheimer's disease are still lacking. OBJECTIVES To test whether presenilin-1 E280A mutation carriers have reduced basal forebrain functional connectivity and whether this is linked to amyloid pathology. DESIGN This is a cross-sectional study that analyzes baseline functional imaging data. SETTING We obtained data from the Colombia cohort Alzheimer's Prevention Initiative Autosomal-Dominant Alzheimer's Disease Trial. PARTICIPANTS We analyzed data from 215 asymptomatic subjects carrying the presenilin-1 E280A mutation [64% female; 147 carriers (M = 35 years), 68 noncarriers (M = 40 years)]. MEASUREMENTS We extracted functional magnetic resonance imaging data using seed-based connectivity analysis to examine the anterior and posterior subdivisions of the basal forebrain. Subsequently, we performed a Bayesian Analysis of Covariance to assess the impact of carrier status on functional connectivity in relation to amyloid positivity. For comparison, we also investigated hippocampus connectivity. RESULTS We found no effect of carrier status on anterior (Bayesian Factor10 = 1.167) and posterior basal forebrain connectivity (Bayesian Factor10 = 0.033). In carriers, we found no association of amyloid positivity with basal forebrain connectivity. CONCLUSIONS We falsified the hypothesis of basal forebrain connectivity reduction in preclinical mutation carriers with amyloid pathology. If replicated, these findings may not only confirm a discrepancy between familial and sporadic Alzheimer's disease, but also suggest new potential targets for future treatments.
Collapse
Affiliation(s)
- Alice Grazia
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany.
| | - Martin Dyrba
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Greifswald, Rostock, Germany
| | - Nunzio Pomara
- Geriatric Psychiatry Division of Nathan S, Kline Institute, New York, USA
| | - Anna G Temp
- Neurozentrum, BG Klinikum Hamburg GmbH, Germany
| | - Michel J Grothe
- Reina Sofia Alzheimer's Center, CIEN Foundation, ISCIII, Spain
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Greifswald, Rostock, Germany
| |
Collapse
|
3
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Snyder AZ, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Perrin RJ, Benzinger TLS, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD, the Dominantly Inherited Alzheimer Network. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer's disease. Netw Neurosci 2024; 8:1265-1290. [PMID: 39735502 PMCID: PMC11674321 DOI: 10.1162/netn_a_00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 12/31/2024] Open
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved. First, past research has not clearly distinguished between two scenarios: hub regions facing a higher risk of connectivity disruption (targeted attack) and all regions having an equal risk (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We refined the hub disruption index to demonstrate a hub disruption pattern in functional connectivity in autosomal dominant AD that aligned with targeted attacks. This hub disruption is detectable even in preclinical stages, 12 years before the expected symptom onset and is amplified alongside symptomatic progression. Moreover, hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in amyloid-beta positron emission tomography cortical markers, consistent with the activity-dependent degeneration explanation. Taken together, our findings deepen the understanding of brain network organization in neurodegenerative diseases and could be instrumental in refining diagnostic and targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter R. Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy F. Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Abraham Z. Snyder
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward D. Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Muriah D. Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
4
|
Liu J, Cui W, Chen Y, Ma Y, Dong Q, Cai R, Li Y, Hu B. Deep Fusion of Multi-Template Using Spatio-Temporal Weighted Multi-Hypergraph Convolutional Networks for Brain Disease Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:860-873. [PMID: 37847616 DOI: 10.1109/tmi.2023.3325261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Conventional functional connectivity network (FCN) based on resting-state fMRI (rs-fMRI) can only reflect the relationship between pairwise brain regions. Thus, the hyper-connectivity network (HCN) has been widely used to reveal high-order interactions among multiple brain regions. However, existing HCN models are essentially spatial HCN, which reflect the spatial relevance of multiple brain regions, but ignore the temporal correlation among multiple time points. Furthermore, the majority of HCN construction and learning frameworks are limited to using a single template, while the multi-template carries richer information. To address these issues, we first employ multiple templates to parcellate the rs-fMRI into different brain regions. Then, based on the multi-template data, we propose a spatio-temporal weighted HCN (STW-HCN) to capture more comprehensive high-order temporal and spatial properties of brain activity. Next, a novel deep fusion model of multi-template called spatio-temporal weighted multi-hypergraph convolutional network (STW-MHGCN) is proposed to fuse the STW-HCN of multiple templates, which extracts the deep interrelation information between different templates. Finally, we evaluate our method on the ADNI-2 and ABIDE-I datasets for mild cognitive impairment (MCI) and autism spectrum disorder (ASD) analysis. Experimental results demonstrate that the proposed method is superior to the state-of-the-art approaches in MCI and ASD classification, and the abnormal spatio-temporal hyper-edges discovered by our method have significant significance for the brain abnormalities analysis of MCI and ASD.
Collapse
|
5
|
Brown JA, Lee AJ, Fernhoff K, Pistone T, Pasquini L, Wise AB, Staffaroni AM, Luisa Mandelli M, Lee SE, Boxer AL, Rankin KP, Rabinovici GD, Luisa Gorno Tempini M, Rosen HJ, Kramer JH, Miller BL, Seeley WW, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Functional network collapse in neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569654. [PMID: 38106054 PMCID: PMC10723363 DOI: 10.1101/2023.12.01.569654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cognitive and behavioral deficits in Alzheimer's disease (AD) and frontotemporal dementia (FTD) result from brain atrophy and altered functional connectivity. However, it is unclear how atrophy relates to functional connectivity disruptions across dementia subtypes and stages. We addressed this question using structural and functional MRI from 221 patients with AD (n=82), behavioral variant FTD (n=41), corticobasal syndrome (n=27), nonfluent (n=34) and semantic (n=37) variant primary progressive aphasia, and 100 cognitively normal individuals. Using partial least squares regression, we identified three principal structure-function components. The first component showed overall atrophy correlating with primary cortical hypo-connectivity and subcortical/association cortical hyper-connectivity. Components two and three linked focal syndrome-specific atrophy to peri-lesional hypo-connectivity and distal hyper-connectivity. Structural and functional component scores predicted global and domain-specific cognitive deficits. Anatomically, functional connectivity changes reflected alterations in specific brain activity gradients. Eigenmode analysis identified temporal phase and amplitude collapse as an explanation for atrophy-driven functional connectivity changes.
Collapse
Affiliation(s)
- Jesse A. Brown
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Alex J. Lee
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Kristen Fernhoff
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Taylor Pistone
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Lorenzo Pasquini
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Amy B. Wise
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Adam M. Staffaroni
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Maria Luisa Mandelli
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Suzee E. Lee
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Adam L. Boxer
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Katherine P. Rankin
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Gil D. Rabinovici
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Maria Luisa Gorno Tempini
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Howard J. Rosen
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Joel H. Kramer
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Bruce L. Miller
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - William W. Seeley
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | | |
Collapse
|
6
|
Zhang Z, Chan MY, Han L, Carreno CA, Winter-Nelson E, Wig GS. Dissociable Effects of Alzheimer's Disease-Related Cognitive Dysfunction and Aging on Functional Brain Network Segregation. J Neurosci 2023; 43:7879-7892. [PMID: 37714710 PMCID: PMC10648516 DOI: 10.1523/jneurosci.0579-23.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
Alzheimer's disease (AD) is associated with changes in large-scale functional brain network organization. Individuals with AD exhibit less segregated resting-state brain networks compared with individuals without dementia. However, declines in brain network segregation are also evident as adult individuals grow older. Determining whether these observations reflect unique or overlapping alterations on the functional connectome of the brain is essential for understanding the impact of AD on network organization and incorporating measures of functional brain network organization toward AD characterization. Relationships between AD dementia severity and participant's age on resting-state brain system segregation were examined in 326 cognitively healthy and 275 cognitively impaired human individuals recruited through the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 601; age range, 55-96 years; 320 females). Greater dementia severity and increasing age were independently associated with lower brain system segregation. Further, dementia versus age relationships with brain network organization varied according to the processing roles of brain systems and types of network interactions. Aging was associated with alterations to association systems, primarily among within-system relationships. Conversely, dementia severity was associated with alterations that included both association systems and sensory-motor systems and was most prominent among cross-system interactions. Dementia-related network alterations were evident regardless of the presence of cortical amyloid burden, revealing that the measures of functional network organization are unique from this marker of AD-related pathology. Collectively, these observations demonstrate the specific and widespread alterations in the topological organization of large-scale brain networks that accompany AD and highlight functionally dissociable brain network vulnerabilities associated with AD-related cognitive dysfunction versus aging.SIGNIFICANCE STATEMENT Alzheimer's disease (AD)-associated cognitive dysfunction is hypothesized to be a consequence of brain network damage. It is unclear exactly how brain network alterations vary with dementia severity and whether they are distinct from alterations associated with aging. We evaluated functional brain network organization measured at rest among individuals who varied in age and dementia status. AD and aging exerted dissociable impacts on the brain's functional connectome. AD-associated brain network alterations were widespread and involved systems that subserve not only higher-order cognitive operations, but also sensory and motor operations. Notably, AD-related network alterations were independent of amyloid pathology. The research furthers our understanding of AD-related brain dysfunction and motivates refining existing frameworks of dementia characterization with measures of functional network organization.
Collapse
Affiliation(s)
- Ziwei Zhang
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75235
| | - Micaela Y Chan
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75235
| | - Liang Han
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75235
| | - Claudia A Carreno
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75235
| | - Ezra Winter-Nelson
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75235
| | - Gagan S Wig
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75235
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
7
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Bateman RJ, Perrin RJ, Benzinger T, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564633. [PMID: 37961586 PMCID: PMC10634945 DOI: 10.1101/2023.10.29.564633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to these hubs have profound implications for overall brain network integrity and functionality. Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized in AD patients. Computational models paired with evidence from animal experiments hint at a mechanistic explanation, suggesting that these hubs may be preferentially targeted in neurodegeneration, due to their high neuronal activity levels-a phenomenon termed "activity-dependent degeneration". Yet, two critical issues were unresolved. First, past research hasn't definitively shown whether hub regions face a higher likelihood of impairment (targeted attack) compared to other regions or if impairment likelihood is uniformly distributed (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We applied a refined hub disruption index to determine the presence of targeted attacks in AD. Furthermore, we explored potential evidence for activity-dependent degeneration by evaluating if hub vulnerability is better explained by global connectivity or connectivity variations across functional systems, as well as comparing its timing relative to amyloid beta deposition in the brain. Our unique cohort of participants with autosomal dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD to determine the hub disruption timeline in relation to expected symptom emergence. Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside symptomatic progression. Moreover, since excessive local neuronal activity has been shown to increase amyloid deposition and high connectivity regions show high level of neuronal activity, our observation that hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in Aβ PET cortical markers is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions were discernible 8 years before the expected age of symptom onset. Taken together, our findings not only align with the targeted attack on hubs model but also suggest that activity-dependent degeneration might be the cause of hub vulnerability. This deepened understanding could be instrumental in refining diagnostic techniques and developing targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Peter R Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, 02912
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Gregory S Day
- Department of Neurology, Mayo Clinic College of Medicine, Jacksonville, FL, USA, 32224
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany, 81675
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, 72076
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany, 72076
| | | | - Randell J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Tammie Benzinger
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA, 47405
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| |
Collapse
|
8
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre J, Yushkevich PA, Wolk DA. Aging and Alzheimer's disease have dissociable effects on local and regional medial temporal lobe connectivity. Brain Commun 2023; 5:fcad245. [PMID: 37767219 PMCID: PMC10521906 DOI: 10.1093/braincomms/fcad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura E M Wisse
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Diagnostic Radiology, Lund University, 221 00 Lund, Sweden
| | - Melissa Kelley
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Lane
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Sherin
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael DiCalogero
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Ibáñez-Berganza M, Lucibello C, Santucci F, Gili T, Gabrielli A. Noise cleaning the precision matrix of short time series. Phys Rev E 2023; 108:024313. [PMID: 37723818 DOI: 10.1103/physreve.108.024313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
We present a comparison between various algorithms of inference of covariance and precision matrices in small data sets of real vectors of the typical length and dimension of human brain activity time series retrieved by functional magnetic resonance imaging (fMRI). Assuming a Gaussian model underlying the neural activity, the problem consists of denoising the empirically observed matrices to obtain a better estimator of the (unknown) true precision and covariance matrices. We consider several standard noise-cleaning algorithms and compare them on two types of data sets. The first type consists of synthetic time series sampled from a generative Gaussian model of which we can vary the fraction of dimensions per sample q and the strength of off-diagonal correlations. The second type consists of time series of fMRI brain activity of human subjects at rest. The reliability of each algorithm is assessed in terms of test-set likelihood and, in the case of synthetic data, of the distance from the true precision matrix. We observe that the so-called optimal rotationally invariant estimator, based on random matrix theory, leads to a significantly lower distance from the true precision matrix in synthetic data and higher test likelihood in natural fMRI data. We propose a variant of the optimal rotationally invariant estimator in which one of its parameters is optimzed by cross-validation. In the severe undersampling regime (large q) typical of fMRI series, it outperforms all the other estimators. We furthermore propose a simple algorithm based on an iterative likelihood gradient ascent, leading to very accurate estimations in weakly correlated synthetic data sets.
Collapse
Affiliation(s)
- Miguel Ibáñez-Berganza
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy and Istituto Italiano di Tecnologia. Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
| | - Carlo Lucibello
- AI Lab, Institute for Data Science and Analytics, Bocconi University, 20136 Milano, Italy
| | - Francesca Santucci
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy
| | - Tommaso Gili
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy
| | - Andrea Gabrielli
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Universitá degli Studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy and Centro Ricerche Enrico Fermi, Via Panisperna 89a, 00184 Rome, Italy
| |
Collapse
|
10
|
Park KY, Snyder AZ, Olufawo M, Trevino G, Luckett PH, Lamichhane B, Xie T, Lee JJ, Shimony JS, Leuthardt EC. Glioblastoma induces whole-brain spectral change in resting state fMRI: Associations with clinical comorbidities and overall survival. Neuroimage Clin 2023; 39:103476. [PMID: 37453204 PMCID: PMC10371854 DOI: 10.1016/j.nicl.2023.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Glioblastoma, a highly aggressive form of brain tumor, is a brain-wide disease. We evaluated the impact of tumor burden on whole brain resting-state functional magnetic resonance imaging (rs-fMRI) activity. Specifically, we analyzed rs-fMRI signals in the temporal frequency domain in terms of the power-law exponent and fractional amplitude of low-frequency fluctuations (fALFF). We contrasted 189 patients with newly-diagnosed glioblastoma versus 189 age-matched healthy reference participants from an external dataset. The patient and reference datasets were matched for age and head motion. The principal finding was markedly flatter spectra and reduced grey matter fALFF in the patients as compared to the reference dataset. We posit that the whole-brain spectral change is attributable to global dysregulation of excitatory and inhibitory balance and metabolic demand in the tumor-bearing brain. Additionally, we observed that clinical comorbidities, in particular, seizures, and MGMT promoter methylation, were associated with flatter spectra. Notably, the degree of change in spectra was predictive of overall survival. Our findings suggest that frequency domain analysis of rs-fMRI activity provides prognostic information in glioblastoma patients and offers a means of noninvasively studying the effects of glioblastoma on the whole brain.
Collapse
Affiliation(s)
- Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bidhan Lamichhane
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA; Center for Health Sciences, Oklahoma State University, 1013 E 66th Pl, Tulsa, OK 74136, USA
| | - Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Wheelock MD, Strain JF, Mansfield P, Tu JC, Tanenbaum A, Preische O, Chhatwal JP, Cash DM, Cruchaga C, Fagan AM, Fox NC, Graff-Radford NR, Hassenstab J, Jack CR, Karch CM, Levin J, McDade EM, Perrin RJ, Schofield PR, Xiong C, Morris JC, Bateman RJ, Jucker M, Benzinger TLS, Ances BM, Eggebrecht AT, Gordon BA, Allegri R, Araki A, Barthelemy N, Bateman R, Bechara J, Benzinger T, Berman S, Bodge C, Brandon S, Brooks W, Brosch J, Buck J, Buckles V, Carter K, Cash D, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Fagan A, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gordon B, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Haass C, Häsler L, Hassenstab J, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, et alWheelock MD, Strain JF, Mansfield P, Tu JC, Tanenbaum A, Preische O, Chhatwal JP, Cash DM, Cruchaga C, Fagan AM, Fox NC, Graff-Radford NR, Hassenstab J, Jack CR, Karch CM, Levin J, McDade EM, Perrin RJ, Schofield PR, Xiong C, Morris JC, Bateman RJ, Jucker M, Benzinger TLS, Ances BM, Eggebrecht AT, Gordon BA, Allegri R, Araki A, Barthelemy N, Bateman R, Bechara J, Benzinger T, Berman S, Bodge C, Brandon S, Brooks W, Brosch J, Buck J, Buckles V, Carter K, Cash D, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Fagan A, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gordon B, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Haass C, Häsler L, Hassenstab J, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, Jucker M, Karch C, Käser S, Kasuga K, Keefe S, Klunk W, Koeppe R, Koudelis D, Kuder-Buletta E, Laske C, Lee JH, Levey A, Levin J, Li Y, Lopez O, Marsh J, Martinez R, Martins R, Mason NS, Masters C, Mawuenyega K, McCullough A, McDade E, Mejia A, Morenas-Rodriguez E, Mori H, Morris J, Mountz J, Mummery C, Nadkami N, Nagamatsu A, Neimeyer K, Niimi Y, Noble J, Norton J, Nuscher B, O'Connor A, Obermüller U, Patira R, Perrin R, Ping L, Preische O, Renton A, Ringman J, Salloway S, Sanchez-Valle R, Schofield P, Senda M, Seyfried N, Shady K, Shimada H, Sigurdson W, Smith J, Smith L, Snitz B, Sohrabi H, Stephens S, Taddei K, Thompson S, Vöglein J, Wang P, Wang Q, Weamer E, Xiong C, Xu J, Xu X, the Dominantly Inherited Alzheimer Network. Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer's disease. Brain 2023; 146:2928-2943. [PMID: 36625756 PMCID: PMC10316768 DOI: 10.1093/brain/awac498] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.
Collapse
Affiliation(s)
- Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Jeremy F Strain
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Aaron Tanenbaum
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David M Cash
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Nick C Fox
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | | | - Jason Hassenstab
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eric M McDade
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University in St. Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Randal J Bateman
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tammie L S Benzinger
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Luckett PH, Lee JJ, Park KY, Raut RV, Meeker KL, Gordon EM, Snyder AZ, Ances BM, Leuthardt EC, Shimony JS. Resting state network mapping in individuals using deep learning. Front Neurol 2023; 13:1055437. [PMID: 36712434 PMCID: PMC9878609 DOI: 10.3389/fneur.2022.1055437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Resting state functional MRI (RS-fMRI) is currently used in numerous clinical and research settings. The localization of resting state networks (RSNs) has been utilized in applications ranging from group analysis of neurodegenerative diseases to individual network mapping for pre-surgical planning of tumor resections. Reproducibility of these results has been shown to require a substantial amount of high-quality data, which is not often available in clinical or research settings. Methods In this work, we report voxelwise mapping of a standard set of RSNs using a novel deep 3D convolutional neural network (3DCNN). The 3DCNN was trained on publicly available functional MRI data acquired in n = 2010 healthy participants. After training, maps that represent the probability of a voxel belonging to a particular RSN were generated for each participant, and then used to calculate mean and standard deviation (STD) probability maps, which are made publicly available. Further, we compared our results to previously published resting state and task-based functional mappings. Results Our results indicate this method can be applied in individual subjects and is highly resistant to both noisy data and fewer RS-fMRI time points than are typically acquired. Further, our results show core regions within each network that exhibit high average probability and low STD. Discussion The 3DCNN algorithm can generate individual RSN localization maps, which are necessary for clinical applications. The similarity between 3DCNN mapping results and task-based fMRI responses supports the association of specific functional tasks with RSNs.
Collapse
Affiliation(s)
- Patrick H. Luckett
- Division of Neurotechnology, Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ki Yun Park
- Division of Neurotechnology, Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan V. Raut
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
- MindScope Program, Allen Institute, Seattle, WA, United States
| | - Karin L. Meeker
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Evan M. Gordon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric C. Leuthardt
- Division of Neurotechnology, Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, United States
- Brain Laser Center, Washington University School of Medicine, St. Louis, MO, United States
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Lor CS, Zhang M, Karner A, Steyrl D, Sladky R, Scharnowski F, Haugg A. Pre- and post-task resting-state differs in clinical populations. Neuroimage Clin 2023; 37:103345. [PMID: 36780835 PMCID: PMC9925974 DOI: 10.1016/j.nicl.2023.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Resting-state functional connectivity has generated great hopes as a potential brain biomarker for improving prevention, diagnosis, and treatment in psychiatry. This neuroimaging protocol can routinely be performed by patients and does not depend on the specificities of a task. Thus, it seems ideal for big data approaches that require aggregating data across multiple studies and sites. However, technical variability, diverging data analysis approaches, and differences in data acquisition protocols introduce heterogeneity to the aggregated data. Besides these technical aspects, a prior task that changes the psychological state of participants might also contribute to heterogeneity. In healthy participants, studies have shown that behavioral tasks can influence resting-state measures, but such effects have not yet been reported in clinical populations. Here, we fill this knowledge gap by comparing resting-state functional connectivity before and after clinically relevant tasks in two clinical conditions, namely substance use disorders and phobias. The tasks consisted of viewing craving-inducing and spider anxiety provoking pictures that are frequently used in cue-reactivity studies and exposure therapy. We found distinct pre- vs post-task resting-state connectivity differences in each group, as well as decreased thalamo-cortical and increased intra-thalamic connectivity which might be associated with decreased vigilance in both groups. Our results confirm that resting-state measures can be strongly influenced by prior emotion-inducing tasks that need to be taken into account when pooling resting-state scans for clinical biomarker detection. This demands that resting-state datasets should include a complete description of the experimental design, especially when a task preceded data collection.
Collapse
Affiliation(s)
- Cindy Sumaly Lor
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland.
| | - Mengfan Zhang
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - Alexander Karner
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - Ronald Sladky
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Frank Scharnowski
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, Neumünsterallee 9, 8032 Zürich, Switzerland
| |
Collapse
|