1
|
Li M, Chen C, Xiong Z, Liu Y, Rong P, Shan S, Liu F, Sun H, Gao Y. Quantitative susceptibility mapping via deep neural networks with iterative reverse concatenations and recurrent modules. Med Phys 2025; 52:4341-4354. [PMID: 40089979 DOI: 10.1002/mp.17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a post-processing magnetic resonance imaging (MRI) technique that extracts the distribution of tissue susceptibilities and holds significant promise in the study of neurological diseases. However, the ill-conditioned nature of dipole inversion often results in noise and artifacts during QSM reconstruction from the tissue field. Deep learning methods have shown great potential in addressing these issues; however, most existing approaches rely on basic U-net structures, leading to limited performances and reconstruction artifacts sometimes. PURPOSE This study aims to develop a novel deep learning-based method, IR2QSM, for improving QSM reconstruction accuracy while mitigating noise and artifacts by leveraging a unique network architecture that enhances latent feature utilization. METHODS IR2QSM, an advanced U-net architecture featuring four iterations of reverse concatenations and middle recurrent modules, was proposed to optimize feature fusion and improve QSM accuracy, and comparative experiments based on both simulated and in vivo datasets were carried out to compare IR2QSM with two traditional iterative methods (iLSQR, MEDI) and four recently proposed deep learning methods (U-net, xQSM, LPCNN, and MoDL-QSM). RESULTS In this work, IR2QSM outperformed all other methods in reducing artifacts and noise in QSM images. It achieved on average the lowest XSIM (84.81%) in simulations, showing improvements of 12.80%, 12.68%, 18.66%, 10.49%, 25.57%, and 19.78% over iLSQR, MEDI, U-net, xQSM, LPCNN, and MoDL-QSM, respectively, and yielded results with the least artifacts on the in vivo data and present the most visually appealing results. In the meantime, it successfully alleviated the over-smoothing and susceptibility underestimation in LPCNN results. CONCLUSION Overall, the proposed IR2QSM showed superior QSM results compared to iterative and deep learning-based methods, offering a more accurate QSM solution for clinical applications.
Collapse
Affiliation(s)
- Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chen Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhuang Xiong
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Yin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Shan
- State Key Laboratory of Radiation, Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Feng Liu
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Hongfu Sun
- School of Engineering, University of Newcastle, Newcastle, Australia
| | - Yang Gao
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhang M, Feng R, Li Z, Feng J, Wu Q, Zhang Z, Ma C, Wu J, Yan F, Liu C, Zhang Y, Wei H. A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation. Med Image Anal 2024; 95:103173. [PMID: 38657424 DOI: 10.1016/j.media.2024.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxin Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Gao Y, Xiong Z, Shan S, Liu Y, Rong P, Li M, Wilman AH, Pike GB, Liu F, Sun H. Plug-and-Play latent feature editing for orientation-adaptive quantitative susceptibility mapping neural networks. Med Image Anal 2024; 94:103160. [PMID: 38552528 DOI: 10.1016/j.media.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Quantitative susceptibility mapping (QSM) is a post-processing technique for deriving tissue magnetic susceptibility distribution from MRI phase measurements. Deep learning (DL) algorithms hold great potential for solving the ill-posed QSM reconstruction problem. However, a significant challenge facing current DL-QSM approaches is their limited adaptability to magnetic dipole field orientation variations during training and testing. In this work, we propose a novel Orientation-Adaptive Latent Feature Editing (OA-LFE) module to learn the encoding of acquisition orientation vectors and seamlessly integrate them into the latent features of deep networks. Importantly, it can be directly Plug-and-Play (PnP) into various existing DL-QSM architectures, enabling reconstructions of QSM from arbitrary magnetic dipole orientations. Its effectiveness is demonstrated by combining the OA-LFE module into our previously proposed phase-to-susceptibility single-step instant QSM (iQSM) network, which was initially tailored for pure-axial acquisitions. The proposed OA-LFE-empowered iQSM, which we refer to as iQSM+, is trained in a simulated-supervised manner on a specially-designed simulation brain dataset. Comprehensive experiments are conducted on simulated and in vivo human brain datasets, encompassing subjects ranging from healthy individuals to those with pathological conditions. These experiments involve various MRI platforms (3T and 7T) and aim to compare our proposed iQSM+ against several established QSM reconstruction frameworks, including the original iQSM. The iQSM+ yields QSM images with significantly improved accuracies and mitigates artifacts, surpassing other state-of-the-art DL-QSM algorithms. The PnP OA-LFE module's versatility was further demonstrated by its successful application to xQSM, a distinct DL-QSM network for dipole inversion. In conclusion, this work introduces a new DL paradigm, allowing researchers to develop innovative QSM methods without requiring a complete overhaul of their existing architectures.
Collapse
Affiliation(s)
- Yang Gao
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Zhuang Xiong
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Shanshan Shan
- State Key Laboratory of Radiation, Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Alan H Wilman
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Feng Liu
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Hongfu Sun
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia; School of Engineering, University of Newcastle, Newcastle, Australia
| |
Collapse
|
4
|
Xiong Z, Gao Y, Liu Y, Fazlollahi A, Nestor P, Liu F, Sun H. Quantitative susceptibility mapping through model-based deep image prior (MoDIP). Neuroimage 2024; 291:120583. [PMID: 38554781 DOI: 10.1016/j.neuroimage.2024.120583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
The data-driven approach of supervised learning methods has limited applicability in solving dipole inversion in Quantitative Susceptibility Mapping (QSM) with varying scan parameters across different objects. To address this generalization issue in supervised QSM methods, we propose a novel training-free model-based unsupervised method called MoDIP (Model-based Deep Image Prior). MoDIP comprises a small, untrained network and a Data Fidelity Optimization (DFO) module. The network converges to an interim state, acting as an implicit prior for image regularization, while the optimization process enforces the physical model of QSM dipole inversion. Experimental results demonstrate MoDIP's excellent generalizability in solving QSM dipole inversion across different scan parameters. It exhibits robustness against pathological brain QSM, achieving over 32 % accuracy improvement than supervised deep learning methods. It is also 33 % more computationally efficient and runs 4 times faster than conventional DIP-based approaches, enabling 3D high-resolution image reconstruction in under 4.5 min.
Collapse
Affiliation(s)
- Zhuang Xiong
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Yang Gao
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Amir Fazlollahi
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Peter Nestor
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Feng Liu
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Hongfu Sun
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia; School of Engineering, University of Newcastle, Newcastle, Australia.
| |
Collapse
|
5
|
Graf S, Wohlgemuth WA, Deistung A. Incorporating a-priori information in deep learning models for quantitative susceptibility mapping via adaptive convolution. Front Neurosci 2024; 18:1366165. [PMID: 38529264 PMCID: PMC10962327 DOI: 10.3389/fnins.2024.1366165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Quantitative susceptibility mapping (QSM) has attracted considerable interest for tissue characterization (e.g., iron and calcium accumulation, myelination, venous vasculature) in the human brain and relies on extensive data processing of gradient-echo MRI phase images. While deep learning-based field-to-susceptibility inversion has shown great potential, the acquisition parameters applied in clinical settings such as image resolution or image orientation with respect to the magnetic field have not been fully accounted for. Furthermore, the lack of comprehensive training data covering a wide range of acquisition parameters further limits the current QSM deep learning approaches. Here, we propose the integration of a priori information of imaging parameters into convolutional neural networks with our approach, adaptive convolution, that learns the mapping between the additional presented information (acquisition parameters) and the changes in the phase images associated with these varying acquisition parameters. By associating a-priori information with the network parameters itself, the optimal set of convolution weights is selected based on data-specific attributes, leading to generalizability towards changes in acquisition parameters. Moreover, we demonstrate the feasibility of pre-training on synthetic data and transfer learning to clinical brain data to achieve substantial improvements in the computation of susceptibility maps. The adaptive convolution 3D U-Net demonstrated generalizability in acquisition parameters on synthetic and in-vivo data and outperformed models lacking adaptive convolution or transfer learning. Further experiments demonstrate the impact of the side information on the adaptive model and assessed susceptibility map computation on simulated pathologic data sets and measured phase data.
Collapse
Affiliation(s)
- Simon Graf
- University Clinic and Polyclinic for Radiology, University Hospital Halle (Saale), Halle, Germany
- Halle MR Imaging Core Facility, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Walter A. Wohlgemuth
- University Clinic and Polyclinic for Radiology, University Hospital Halle (Saale), Halle, Germany
- Halle MR Imaging Core Facility, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andreas Deistung
- University Clinic and Polyclinic for Radiology, University Hospital Halle (Saale), Halle, Germany
- Halle MR Imaging Core Facility, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Affine transformation edited and refined deep neural network for quantitative susceptibility mapping. Neuroimage 2023; 267:119842. [PMID: 36586542 DOI: 10.1016/j.neuroimage.2022.119842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Deep neural networks have demonstrated great potential in solving dipole inversion for Quantitative Susceptibility Mapping (QSM). However, the performances of most existing deep learning methods drastically degrade with mismatched sequence parameters such as acquisition orientation and spatial resolution. We propose an end-to-end AFfine Transformation Edited and Refined (AFTER) deep neural network for QSM, which is robust against arbitrary acquisition orientation and spatial resolution up to 0.6 mm isotropic at the finest. The AFTER-QSM neural network starts with a forward affine transformation layer, followed by a Unet for dipole inversion, then an inverse affine transformation layer, followed by a Residual Dense Network (RDN) for QSM refinement. Simulation and in-vivo experiments demonstrated that the proposed AFTER-QSM network architecture had excellent generalizability. It can successfully reconstruct susceptibility maps from highly oblique and anisotropic scans, leading to the best image quality assessments in simulation tests and suppressed streaking artifacts and noise levels for in-vivo experiments compared with other methods. Furthermore, ablation studies showed that the RDN refinement network significantly reduced image blurring and susceptibility underestimation due to affine transformations. In addition, the AFTER-QSM network substantially shortened the reconstruction time from minutes using conventional methods to only a few seconds.
Collapse
|