1
|
Luppi AI, Uhrig L, Tasserie J, Shafiei G, Muta K, Hata J, Okano H, Golkowski D, Ranft A, Ilg R, Jordan D, Gini S, Liu ZQ, Yee Y, Signorelli CM, Cofre R, Destexhe A, Menon DK, Stamatakis EA, Connor CW, Gozzi A, Fulcher BD, Jarraya B, Misic B. Comprehensive profiling of anaesthetised brain dynamics across phylogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644729. [PMID: 40196621 PMCID: PMC11974681 DOI: 10.1101/2025.03.22.644729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode. We then apply massive feature extraction to comprehensively characterize local neural dynamics across > 6 000 time-series features. Using dynamics as a common space for comparison across species, we identify a phylogenetically conserved dynamical profile of anaesthesia that encompasses multiple features, including reductions in intrinsic timescales. This dynamical signature has an evolutionarily conserved spatial layout, covarying with transcriptional profiles of excitatory and inhibitory neurotransmission across human, macaque and mouse cortex. At the network level, anesthetic-induced changes in local dynamics manifest as reductions in inter-regional synchrony. This relationship between local dynamics and global connectivity can be recapitulated in silico using a connectome-based computational model. Finally, this dynamical regime of anaesthesia is experimentally reversed in vivo by deep-brain stimulation of the centromedian thalamus in the macaque, resulting in restored arousal and behavioural responsiveness. Altogether, comprehensive dynamical phenotyping reveals that spatiotemporal isolation of local neural activity during anesthesia is conserved across species and anesthetics.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
- St John’s College, University of Cambridge, Cambridge, UK
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanako Muta
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Silvia Gini
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Yohan Yee
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Camilo M. Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Philosophy of Artificial Intelligence, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Cofre
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christopher W. Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Alessandro Gozzi
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, Australia
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Neurology, Foch Hospital, Suresnes, France
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Hancock F, Rosas FE, Luppi AI, Zhang M, Mediano PAM, Cabral J, Deco G, Kringelbach ML, Breakspear M, Kelso JAS, Turkheimer FE. Metastability demystified - the foundational past, the pragmatic present and the promising future. Nat Rev Neurosci 2025; 26:82-100. [PMID: 39663408 DOI: 10.1038/s41583-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Healthy brain function depends on balancing stable integration between brain areas for effective coordinated functioning, with coexisting segregation that allows subsystems to express their functional specialization. Metastability, a concept from the dynamical systems literature, has been proposed as a key signature that characterizes this balance. Building on this principle, the neuroscience literature has leveraged the phenomenon of metastability to investigate various aspects of brain function in health and disease. However, this body of work often uses the notion of metastability heuristically, and sometimes inaccurately, making it difficult to navigate the vast literature, interpret findings and foster further development of theoretical and experimental methodologies. Here, we provide a comprehensive review of metastability and its applications in neuroscience, covering its scientific and historical foundations and the practical measures used to assess it in empirical data. We also provide a critical analysis of recent theoretical developments, clarifying common misconceptions and paving the road for future developments.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK.
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, UK.
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
- Sussex AI, University of Sussex, Brighton, UK.
- Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK.
| | - Andrea I Luppi
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- St John's College, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mengsen Zhang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institución Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University Clayton, Melbourne, Victoria, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, New South Wales, Australia
| | - J A Scott Kelso
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland
- The Bath Institute for the Augmented Human, University of Bath, Bath, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- The Institute for Human and Synthetic Minds, King's College London, London, UK
| |
Collapse
|
3
|
Varley TF, Havert D, Fosque L, Alipour A, Weerawongphrom N, Naganobori H, O’Shea L, Pope M, Beggs J. The serotonergic psychedelic N,N-dipropyltryptamine alters information-processing dynamics in in vitro cortical neural circuits. Netw Neurosci 2024; 8:1421-1438. [PMID: 39735490 PMCID: PMC11674936 DOI: 10.1162/netn_a_00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/08/2024] [Indexed: 12/31/2024] Open
Abstract
Most of the recent work in psychedelic neuroscience has been done using noninvasive neuroimaging, with data recorded from the brains of adult volunteers under the influence of a variety of drugs. While these data provide holistic insights into the effects of psychedelics on whole-brain dynamics, the effects of psychedelics on the mesoscale dynamics of neuronal circuits remain much less explored. Here, we report the effects of the serotonergic psychedelic N,N-diproptyltryptamine (DPT) on information-processing dynamics in a sample of in vitro organotypic cultures of cortical tissue from postnatal rats. Three hours of spontaneous activity were recorded: an hour of predrug control, an hour of exposure to 10-μM DPT solution, and a final hour of washout, once again under control conditions. We found that DPT reversibly alters information dynamics in multiple ways: First, the DPT condition was associated with a higher entropy of spontaneous firing activity and reduced the amount of time information was stored in individual neurons. Second, DPT also reduced the reversibility of neural activity, increasing the entropy produced and suggesting a drive away from equilibrium. Third, DPT altered the structure of neuronal circuits, decreasing the overall information flow coming into each neuron, but increasing the number of weak connections, creating a dynamic that combines elements of integration and disintegration. Finally, DPT decreased the higher order statistical synergy present in sets of three neurons. Collectively, these results paint a complex picture of how psychedelics regulate information processing in mesoscale neuronal networks in cortical tissue. Implications for existing hypotheses of psychedelic action, such as the entropic brain hypothesis, are discussed.
Collapse
Affiliation(s)
- Thomas F. Varley
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
| | - Daniel Havert
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Leandro Fosque
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | | | | | | | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Luppi AI, Sanz Perl Y, Vohryzek J, Mediano PAM, Rosas FE, Milisav F, Suarez LE, Gini S, Gutierrez-Barragan D, Gozzi A, Misic B, Deco G, Kringelbach ML. Competitive interactions shape brain dynamics and computation across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619194. [PMID: 39484469 PMCID: PMC11526968 DOI: 10.1101/2024.10.19.619194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome. Across human, macaque, and mouse we show that the architecture of the models that most faithfully reproduce brain activity, consistently combines modular cooperative interactions with diffuse, long-range competitive interactions. The model with competitive interactions consistently outperforms the cooperative-only model, with excellent fit to both spatial and dynamical properties of the living brain, which were not explicitly optimised but rather emerge spontaneously. Competitive interactions in the effective connectivity produce greater levels of synergistic information and local-global hierarchy, and lead to superior computational capacity when used for neuromorphic computing. Altogether, this work provides a mechanistic link between network architecture, dynamical properties, and computation in the mammalian brain.
Collapse
Affiliation(s)
- Andrea I. Luppi
- University of Oxford, Oxford, UK
- St John’s College, Cambridge, UK
- Montreal Neurological Institute, Montreal, Canada
| | | | | | | | | | | | | | - Silvia Gini
- Italian Institute of Technology, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Varley TF. A Synergistic Perspective on Multivariate Computation and Causality in Complex Systems. ENTROPY (BASEL, SWITZERLAND) 2024; 26:883. [PMID: 39451959 PMCID: PMC11507062 DOI: 10.3390/e26100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
What does it mean for a complex system to "compute" or perform "computations"? Intuitively, we can understand complex "computation" as occurring when a system's state is a function of multiple inputs (potentially including its own past state). Here, we discuss how computational processes in complex systems can be generally studied using the concept of statistical synergy, which is information about an output that can only be learned when the joint state of all inputs is known. Building on prior work, we show that this approach naturally leads to a link between multivariate information theory and topics in causal inference, specifically, the phenomenon of causal colliders. We begin by showing how Berkson's paradox implies a higher-order, synergistic interaction between multidimensional inputs and outputs. We then discuss how causal structure learning can refine and orient analyses of synergies in empirical data, and when empirical synergies meaningfully reflect computation versus when they may be spurious. We end by proposing that this conceptual link between synergy, causal colliders, and computation can serve as a foundation on which to build a mathematically rich general theory of computation in complex systems.
Collapse
Affiliation(s)
- Thomas F Varley
- Vermont Complex Systems Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Mindlin I, Herzog R, Belloli L, Manasova D, Monge-Asensio M, Vohryzek J, Escrichs A, Alnagger N, Núñez P, Gosseries O, Kringelbach ML, Deco G, Tagliazucchi E, Naccache L, Rohaut B, Sitt JD, Sanz Perl Y. Whole brain modelling for simulating pharmacological interventions on patients with disorders of consciousness. Commun Biol 2024; 7:1176. [PMID: 39300281 DOI: 10.1038/s42003-024-06852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Disorders of consciousness (DoC) represent a challenging and complex group of neurological conditions characterised by profound disturbances in consciousness. The current range of treatments for DoC is limited. This has sparked growing interest in developing new treatments, including the use of psychedelic drugs. Nevertheless, clinical investigations and the mechanisms behind them are methodologically and ethically constrained. To tackle these limitations, we combined biologically plausible whole-brain models with deep learning techniques to characterise the low-dimensional space of DoC patients. We investigated the effects of model pharmacological interventions by including the whole-brain dynamical consequences of the enhanced neuromodulatory level of different neurotransmitters, and providing geometrical interpretation in the low-dimensional space. Our findings show that serotonergic and opioid receptors effectively shifted the DoC models towards a dynamical behaviour associated with a healthier state, and that these improvements correlated with the mean density of the activated receptors throughout the brain. These findings mark an important step towards the development of treatments not only for DoC but also for a broader spectrum of brain diseases. Our method offers a promising avenue for exploring the therapeutic potential of pharmacological interventions within the ethical and methodological confines of clinical research.
Collapse
Affiliation(s)
- I Mindlin
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France.
| | - R Herzog
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
| | - L Belloli
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Technology and Innovation, Buenos Aires, Argentina
| | - D Manasova
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
- Université Paris Cité, Paris, France
| | - M Monge-Asensio
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - J Vohryzek
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - A Escrichs
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - N Alnagger
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - P Núñez
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - O Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - M L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - G Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - E Tagliazucchi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Technology and Innovation, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - L Naccache
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
| | - B Rohaut
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
- APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Neuro ICU, Sorbonne Université, Paris, France
| | - J D Sitt
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France.
| | - Y Sanz Perl
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Technology and Innovation, Buenos Aires, Argentina.
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
8
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Varley TF, Bongard J. Evolving higher-order synergies reveals a trade-off between stability and information-integration capacity in complex systems. CHAOS (WOODBURY, N.Y.) 2024; 34:063127. [PMID: 38865092 DOI: 10.1063/5.0200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
There has recently been an explosion of interest in how "higher-order" structures emerge in complex systems comprised of many interacting elements (often called "synergistic" information). This "emergent" organization has been found in a variety of natural and artificial systems, although at present, the field lacks a unified understanding of what the consequences of higher-order synergies and redundancies are for systems under study. Typical research treats the presence (or absence) of synergistic information as a dependent variable and report changes in the level of synergy in response to some change in the system. Here, we attempt to flip the script: rather than treating higher-order information as a dependent variable, we use evolutionary optimization to evolve boolean networks with significant higher-order redundancies, synergies, or statistical complexity. We then analyze these evolved populations of networks using established tools for characterizing discrete dynamics: the number of attractors, the average transient length, and the Derrida coefficient. We also assess the capacity of the systems to integrate information. We find that high-synergy systems are unstable and chaotic, but with a high capacity to integrate information. In contrast, evolved redundant systems are extremely stable, but have negligible capacity to integrate information. Finally, the complex systems that balance integration and segregation (known as Tononi-Sporns-Edelman complexity) show features of both chaosticity and stability, with a greater capacity to integrate information than the redundant systems while being more stable than the random and synergistic systems. We conclude that there may be a fundamental trade-off between the robustness of a system's dynamics and its capacity to integrate information (which inherently requires flexibility and sensitivity) and that certain kinds of complexity naturally balance this trade-off.
Collapse
Affiliation(s)
- Thomas F Varley
- Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
| | - Josh Bongard
- Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
10
|
Ibanez A, Kringelbach ML, Deco G. A synergetic turn in cognitive neuroscience of brain diseases. Trends Cogn Sci 2024; 28:319-338. [PMID: 38246816 PMCID: PMC11927795 DOI: 10.1016/j.tics.2023.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Despite significant improvements in our understanding of brain diseases, many barriers remain. Cognitive neuroscience faces four major challenges: complex structure-function associations; disease phenotype heterogeneity; the lack of transdiagnostic models; and oversimplified cognitive approaches restricted to the laboratory. Here, we propose a synergetics framework that can help to perform the necessary dimensionality reduction of complex interactions between the brain, body, and environment. The key solutions include low-dimensional spatiotemporal hierarchies for brain-structure associations, whole-brain modeling to handle phenotype diversity, model integration of shared transdiagnostic pathophysiological pathways, and naturalistic frameworks balancing experimental control and ecological validity. Creating whole-brain models with reduced manifolds combined with ecological measures can improve our understanding of brain disease and help identify novel interventions. Synergetics provides an integrated framework for future progress in clinical and cognitive neuroscience, pushing the boundaries of brain health and disease toward more mature, naturalistic approaches.
Collapse
Affiliation(s)
- Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile; Global Brain Health Institute (GBHI), University California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Morten L Kringelbach
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
11
|
Luppi AI, Rosas FE, Mediano PAM, Menon DK, Stamatakis EA. Information decomposition and the informational architecture of the brain. Trends Cogn Sci 2024; 28:352-368. [PMID: 38199949 DOI: 10.1016/j.tics.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Luppi AI, Uhrig L, Tasserie J, Signorelli CM, Stamatakis EA, Destexhe A, Jarraya B, Cofre R. Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain. Nat Commun 2024; 15:2171. [PMID: 38462641 PMCID: PMC10925605 DOI: 10.1038/s41467-024-46382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo M Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, Oxford, OX1 3QG, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Neurology, Hopital Foch, 92150, Suresnes, France
| | - Rodrigo Cofre
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Varley TF. Generalized decomposition of multivariate information. PLoS One 2024; 19:e0297128. [PMID: 38315691 PMCID: PMC10843128 DOI: 10.1371/journal.pone.0297128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Since its introduction, the partial information decomposition (PID) has emerged as a powerful, information-theoretic technique useful for studying the structure of (potentially higher-order) interactions in complex systems. Despite its utility, the applicability of the PID is restricted by the need to assign elements as either "sources" or "targets", as well as the specific structure of the mutual information itself. Here, I introduce a generalized information decomposition that relaxes the source/target distinction while still satisfying the basic intuitions about information. This approach is based on the decomposition of the Kullback-Leibler divergence, and consequently allows for the analysis of any information gained when updating from an arbitrary prior to an arbitrary posterior. As a result, any information-theoretic measure that can be written as a linear combination of Kullback-Leibler divergences admits a decomposition in the style of Williams and Beer, including the total correlation, the negentropy, and the mutual information as special cases. This paper explores how the generalized information decomposition can reveal novel insights into existing measures, as well as the nature of higher-order synergies. We show that synergistic information is intimately related to the well-known Tononi-Sporns-Edelman (TSE) complexity, and that synergistic information requires a similar integration/segregation balance as a high TSE complexity. Finally, I end with a discussion of how this approach fits into other attempts to generalize the PID and the possibilities for empirical applications.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Computer Science, University of Vermont, Burlington, VT, United States of America
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
14
|
Luppi AI, Cabral J, Cofre R, Mediano PAM, Rosas FE, Qureshi AY, Kuceyeski A, Tagliazucchi E, Raimondo F, Deco G, Shine JM, Kringelbach ML, Orio P, Ching S, Sanz Perl Y, Diringer MN, Stevens RD, Sitt JD. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage 2023; 275:120162. [PMID: 37196986 PMCID: PMC10262065 DOI: 10.1016/j.neuroimage.2023.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Portugal
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile; Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Abid Y Qureshi
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Enzo Tagliazucchi
- Departamento de Física (UBA) e Instituto de Fisica de Buenos Aires (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; National Scientific and Technical Research Council (CONICET), Godoy Cruz, CABA 2290, Argentina
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|