1
|
Lugtmeijer S, Sobolewska AM, de Haan EHF, Scholte HS. Visual feature processing in a large stroke cohort: evidence against modular organization. Brain 2025; 148:1144-1154. [PMID: 39799961 PMCID: PMC11969467 DOI: 10.1093/brain/awaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
Mid-level visual processing represents a crucial stage between basic sensory input and higher-level object recognition. The conventional model posits that fundamental visual qualities, such as colour and motion, are processed in specialized, retinotopic brain regions (e.g. V4 for colour, MT/V5 for motion). Using atlas-based lesion-symptom mapping and disconnectome maps in a cohort of 307 ischaemic stroke patients, we examined the neuroanatomical correlates underlying the processing of eight mid-level visual qualities. Contrary to the predictions of the standard model, our results did not reveal consistent relationships between processing impairments and damage to traditionally associated brain regions. Although we validated our methodology by confirming the established relationship between visual field defects and damage to primary visual areas (V1, V2 and V3), we found no reliable evidence linking processing deficits to specific regions in the posterior brain. These findings challenge the traditional modular view of visual processing and suggest that mid-level visual processing might be more distributed across neural networks than previously thought. This supports alternative models where visual maps represent constellations of co-occurring information rather than specific qualities.
Collapse
Affiliation(s)
- Selma Lugtmeijer
- Centre for Human Brain Health and Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Aleksandra M Sobolewska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Edward H F de Haan
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
- St Hugh’s College, Oxford University, Oxford OX2 6LE, UK
- Psychology Department, Nottingham University, Nottingham NG7 2RD, UK
| | - H Steven Scholte
- Faculty of Social and Behavioural Sciences, University of Amsterdam, 1001 NK Amsterdam, The Netherlands
| |
Collapse
|
2
|
Loehrer PA, Schumacher W, Jost ST, Silverdale M, Petry-Schmelzer JN, Sauerbier A, Gronostay A, Visser-Vandewalle V, Fink GR, Evans J, Krause M, Rizos A, Antonini A, Ashkan K, Martinez-Martin P, Gaser C, Ray Chaudhuri K, Timmermann L, Baldermann JC, Dafsari HS. No evidence for an association of voxel-based morphometry with short-term non-motor outcomes in deep brain stimulation for Parkinson's disease. NPJ Parkinsons Dis 2024; 10:91. [PMID: 38671017 PMCID: PMC11053137 DOI: 10.1038/s41531-024-00695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established therapy in advanced Parkinson's disease (PD). Motor and non-motor outcomes, however, show considerable inter-individual variability. Preoperative morphometry-based metrics have recently received increasing attention to explain treatment effects. As evidence for the prediction of non-motor outcomes is limited, we sought to investigate the association between metrics of voxel-based morphometry and short-term non-motor outcomes following STN-DBS in this prospective open-label study. Forty-nine PD patients underwent structural MRI and a comprehensive clinical assessment at preoperative baseline and 6-month follow-up. Voxel-based morphometry was used to assess associations between cerebral volume and non-motor outcomes corrected for multiple comparisons using a permutation-based approach. We replicated existing results associating volume loss of the superior frontal cortex with subpar motor outcomes. Overall non-motor burden, however, was not significantly associated with morphometric features, limiting its use as a marker to inform patient selection and holistic preoperative counselling.
Collapse
Affiliation(s)
| | - Wibke Schumacher
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, Cologne, Germany
| | - Stefanie T Jost
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal Foundation Trust, Greater Manchester, United Kingdom
| | - Jan Niklas Petry-Schmelzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Anna Sauerbier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Alexandra Gronostay
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Julian Evans
- Department of Neurology and Neurosurgery, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Greater Manchester, United Kingdom
| | - Max Krause
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiation Oncology, Cyberknife Center, Cologne, Germany
| | - Alexandra Rizos
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - K Ray Chaudhuri
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
- The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Juan Carlos Baldermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Freiburg im Breisgau, Germany
| | - Haidar S Dafsari
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.
| |
Collapse
|
3
|
Sperber C, Hakim A, Gallucci L, Arnold M, Umarova RM. Cerebral small vessel disease and stroke: Linked by stroke aetiology, but not stroke lesion location or size. J Stroke Cerebrovasc Dis 2024; 33:107589. [PMID: 38244646 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (SVD) has previously been associated with worse stroke outcome, vascular dementia, and specific post-stroke cognitive deficits. The underlying causal mechanisms of these associations are not yet fully understood. We investigated whether a relationship between SVD and certain stroke aetiologies or a specific stroke lesion anatomy provides a potential explanation. METHODS In a retrospective observational study, we examined 859 patients with first-ever, non-SVD anterior circulation ischemic stroke (age = 69.0±15.2). We evaluated MRI imaging markers to assess an SVD burden score and mapped stroke lesions on diffusion-weighted MRI. We investigated the association of SVD burden with i) stroke aetiology, and ii) lesion anatomy using topographical statistical mapping. RESULTS With increasing SVD burden, stroke of cardioembolic aetiology was more frequent (ρ = 0.175; 95 %-CI = 0.103;0.244), whereas cervical artery dissection (ρ = -0.143; 95 %-CI = -0.198;-0.087) and a patent foramen ovale (ρ = -0.165; 95 %-CI = -0.220;-0.104) were less frequent stroke etiologies. However, no significant associations between SVD burden and stroke aetiology remained after additionally controlling for age (all p>0.125). Lesion-symptom-mapping and Bayesian statistics showed that SVD burden was not associated with a specific stroke lesion anatomy or size. CONCLUSIONS In patients with a high burden of SVD, non-SVD stroke is more likely to be caused by cardioembolic aetiology. The common risk factor of advanced age may link both pathologies and explain some of the existing associations between SVD and stroke. The SVD burden is not related to a specific stroke lesion location.
Collapse
Affiliation(s)
- Christoph Sperber
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Arsany Hakim
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Laura Gallucci
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Marcel Arnold
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roza M Umarova
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Sperber C, Wiesen D, Karnath H, de Haan B. The neuroanatomy of visual extinction following right hemisphere brain damage: Insights from multivariate and Bayesian lesion analyses in acute stroke. Hum Brain Mapp 2024; 45:e26639. [PMID: 38433712 PMCID: PMC10910281 DOI: 10.1002/hbm.26639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Multi-target attention, that is, the ability to attend and respond to multiple visual targets presented simultaneously on the horizontal meridian across both visual fields, is essential for everyday real-world behaviour. Given the close link between the neuropsychological deficit of extinction and attentional limits in healthy subjects, investigating the anatomy that underlies extinction is uniquely capable of providing important insights concerning the anatomy critical for normal multi-target attention. Previous studies into the brain areas critical for multi-target attention and its failure in extinction patients have, however, produced heterogeneous results. In the current study, we used multivariate and Bayesian lesion analysis approaches to investigate the anatomical substrate of visual extinction in a large sample of 108 acute right hemisphere stroke patients. The use of acute stroke patient data and multivariate/Bayesian lesion analysis approaches allowed us to address limitations associated with previous studies and so obtain a more complete picture of the functional network associated with visual extinction. Our results demonstrate that the right temporo-parietal junction (TPJ) is critically associated with visual extinction. The Bayesian lesion analysis additionally implicated the right intraparietal sulcus (IPS), in line with the results of studies in neurologically healthy participants that highlighted the IPS as the area critical for multi-target attention. Our findings resolve the seemingly conflicting previous findings, and emphasise the urgent need for further research to clarify the precise cognitive role of the right TPJ in multi-target attention and its failure in extinction patients.
Collapse
Affiliation(s)
- Christoph Sperber
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of NeurologyInselspital, University Hospital BernBernSwitzerland
| | - Daniel Wiesen
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Hans‐Otto Karnath
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of PsychologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Bianca de Haan
- Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University LondonUxbridgeUK
| |
Collapse
|
5
|
Moore MJ, Demeyere N, Rorden C, Mattingley JB. Lesion mapping in neuropsychological research: A practical and conceptual guide. Cortex 2024; 170:38-52. [PMID: 37940465 PMCID: PMC11474248 DOI: 10.1016/j.cortex.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Margaret J Moore
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.
| | - Nele Demeyere
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Colombia, SC, USA
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia; School of Psychology, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
6
|
Tani K, Iio S, Kamiya M, Yoshizawa K, Shigematsu T, Fujishima I, Tanaka S. Neuroanatomy of reduced distortion of body-centred spatial coding during body tilt in stroke patients. Sci Rep 2023; 13:11853. [PMID: 37481585 PMCID: PMC10363170 DOI: 10.1038/s41598-023-38751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Awareness of the direction of the body's (longitudinal) axis is fundamental for action and perception. The perceived body axis orientation is strongly biased during body tilt; however, the neural substrates underlying this phenomenon remain largely unknown. Here, we tackled this issue using a neuropsychological approach in patients with hemispheric stroke. Thirty-seven stroke patients and 20 age-matched healthy controls adjusted a visual line with the perceived body longitudinal axis when the body was upright or laterally tilted by 10 degrees. The bias of the perceived body axis caused by body tilt, termed tilt-dependent error (TDE), was compared between the groups. The TDE was significantly smaller (i.e., less affected performance by body tilt) in the stroke group (15.9 ± 15.9°) than in the control group (25.7 ± 17.1°). Lesion subtraction analysis and Bayesian lesion-symptom inference revealed that the abnormally reduced TDEs were associated with lesions in the right occipitotemporal cortex, such as the superior and middle temporal gyri. Our findings contribute to a better understanding of the neuroanatomy of body-centred spatial coding during whole-body tilt.
Collapse
Affiliation(s)
- Keisuke Tani
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan.
- Faculty of Psychology, Otemon Gakuin University, 2-1-15 Nishi-Ai, Ibaraki, Osaka, 567-8502, Japan.
| | - Shintaro Iio
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Masato Kamiya
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Kohei Yoshizawa
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Takashi Shigematsu
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Ichiro Fujishima
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|