1
|
Rosso M, Fernández‐Rubio G, Keller PE, Brattico E, Vuust P, Kringelbach ML, Bonetti L. FREQ-NESS Reveals the Dynamic Reconfiguration of Frequency-Resolved Brain Networks During Auditory Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413195. [PMID: 40211612 PMCID: PMC12120751 DOI: 10.1002/advs.202413195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/31/2025] [Indexed: 06/01/2025]
Abstract
The brain is a dynamic system whose network organization is often studied by focusing on specific frequency bands or anatomical regions, leading to fragmented insights, or by employing complex and elaborate methods that hinder straightforward interpretations. To address this issue, a new analytical pipeline named FREQuency-resolved Network Estimation via Source Separation (FREQ-NESS) is introduced. This pipeline is designed to estimate the activation and spatial configuration of simultaneous brain networks across frequencies by analyzing the frequency-resolved multivariate covariance between whole-brain voxel time series. In this study, FREQ-NESS is applied to source-reconstructed magnetoencephalography (MEG) data during resting state and isochronous auditory stimulation. Our results reveal simultaneous, frequency-specific brain networks during resting state, such as the default mode, alpha-band, and motor-beta networks. During auditory stimulation, FREQ-NESS detects: 1) emergence of networks attuned to the stimulation frequency, 2) spatial reorganization of existing networks, such as alpha-band networks shifting from occipital to sensorimotor areas, 3) stability of networks unaffected by auditory stimuli. Furthermore, auditory stimulation significantly enhances cross-frequency coupling, with the phase of auditory networks attuned to the stimulation modulating gamma band amplitude in medial temporal lobe networks. In conclusion, FREQ-NESS effectively maps the brain's spatiotemporal dynamics, providing a comprehensive view of brain function by revealing a landscape of simultaneous, frequency-resolved networks and their interaction.
Collapse
Affiliation(s)
- Mattia Rosso
- Center for Music in the BrainDepartment of Clinical MedicineAarhus University & The Royal Academy of MusicAarhus/AalborgAarhus8000Denmark
- IPEM Institute for Systematic MusicologyGhent UniversityGhent9000Belgium
| | - Gemma Fernández‐Rubio
- Center for Music in the BrainDepartment of Clinical MedicineAarhus University & The Royal Academy of MusicAarhus/AalborgAarhus8000Denmark
| | - Peter Erik Keller
- Center for Music in the BrainDepartment of Clinical MedicineAarhus University & The Royal Academy of MusicAarhus/AalborgAarhus8000Denmark
- MARCS Institute for Brain, Behaviour and DevelopmentWestern Sydney UniversitySydney2751Australia
| | - Elvira Brattico
- Center for Music in the BrainDepartment of Clinical MedicineAarhus University & The Royal Academy of MusicAarhus/AalborgAarhus8000Denmark
- Department of Education, Psychology, CommunicationUniversity of Bari Aldo MoroBari70121Italy
| | - Peter Vuust
- Center for Music in the BrainDepartment of Clinical MedicineAarhus University & The Royal Academy of MusicAarhus/AalborgAarhus8000Denmark
| | - Morten L Kringelbach
- Center for Music in the BrainDepartment of Clinical MedicineAarhus University & The Royal Academy of MusicAarhus/AalborgAarhus8000Denmark
- Centre for Eudaimonia and Human FlourishingLinacre CollegeUniversity of OxfordOxfordOX39BXUnited Kingdom
- Department of PsychiatryUniversity of OxfordOxfordOX37JXUnited Kingdom
| | - Leonardo Bonetti
- Center for Music in the BrainDepartment of Clinical MedicineAarhus University & The Royal Academy of MusicAarhus/AalborgAarhus8000Denmark
- Centre for Eudaimonia and Human FlourishingLinacre CollegeUniversity of OxfordOxfordOX39BXUnited Kingdom
- Department of PsychiatryUniversity of OxfordOxfordOX37JXUnited Kingdom
| |
Collapse
|
2
|
Afnan J, Cai Z, Lina JM, Abdallah C, Pellegrino G, Arcara G, Khajehpour H, Frauscher B, Gotman J, Grova C. Validating MEG estimated resting-state connectome with intracranial EEG. Netw Neurosci 2025; 9:421-446. [PMID: 40161991 PMCID: PMC11949576 DOI: 10.1162/netn_a_00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Magnetoencephalography (MEG) is widely used for studying resting-state brain connectivity. However, MEG source imaging is ill posed and has limited spatial resolution. This introduces source-leakage issues, making it challenging to interpret MEG-derived connectivity in resting states. To address this, we validated MEG-derived connectivity from 45 healthy participants using a normative intracranial EEG (iEEG) atlas. The MEG inverse problem was solved using the wavelet-maximum entropy on the mean method. We computed four connectivity metrics: amplitude envelope correlation (AEC), orthogonalized AEC (OAEC), phase locking value (PLV), and weighted-phase lag index (wPLI). We compared spatial correlation between MEG and iEEG connectomes across standard canonical frequency bands. We found moderate spatial correlations between MEG and iEEG connectomes for AEC and PLV. However, when considering metrics that correct/remove zero-lag connectivity (OAEC/wPLI), the spatial correlation between MEG and iEEG connectomes decreased. MEG exhibited higher zero-lag connectivity compared with iEEG. The correlations between MEG and iEEG connectomes suggest that relevant connectivity patterns can be recovered from MEG. However, since these correlations are moderate/low, MEG connectivity results should be interpreted with caution. Metrics that correct for zero-lag connectivity show decreased correlations, highlighting a trade-off; while MEG may capture more connectivity due to source-leakage, removing zero-lag connectivity can eliminate true connections.
Collapse
Affiliation(s)
- Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Jean-Marc Lina
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec H3C 1K3, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hassan Khajehpour
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean Gotman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Mavroudis I, Kazis D, Petridis FE, Balmus IM, Ciobica A. The Use of Magnetoencephalography in the Diagnosis and Monitoring of Mild Traumatic Brain Injuries and Post-Concussion Syndrome. Brain Sci 2025; 15:154. [PMID: 40002487 PMCID: PMC11853601 DOI: 10.3390/brainsci15020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The main objective of this systematic review was to explore the role of magnetoencephalography (MEG) in the diagnosis, assessment, and monitoring of mild traumatic brain injury (mTBI) and post-concussion syndrome (PCS). We aimed to evaluate the potential of some MEG biomarkers in detecting subtle brain abnormalities often missed by conventional imaging techniques. Methods: A systematic review was conducted using 25 studies that administered MEG to examine mTBI and PCS patients. The quality of the studies was assessed based on selection, comparability, and outcomes. Studies were analyzed for their methodology, evaluated parameters, and the clinical implications of using MEG for mTBI diagnosis. Results: MEG detected abnormal brain oscillations, including increased delta, theta, and gamma waves and disruptions in functional connectivity, particularly in the default mode and frontoparietal networks of patients suffering from mTBI. MEG consistently revealed abnormalities in mTBI patients even when structural imaging was normal. The use of MEG in monitoring recovery showed significant reductions in abnormal slow-wave activity corresponding to clinical improvements. Machine learning algorithms applied to MEG data demonstrated high sensitivity and specificity in distinguishing mTBI patients from healthy controls and predicting clinical outcomes. Conclusions: MEG provides a valuable diagnostic and prognostic tool for mTBI and PCS by identifying subtle neurophysiological abnormalities. The high temporal resolution and the ability to assess functional brain networks make MEG a promising complement to conventional imaging. Future research should focus on integrating MEG with other neuroimaging modalities and standardizing MEG protocols for clinical use.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurosciences, Leeds Teaching Hospitals, Leeds LS9 7TF, UK;
- Academy of Romanian Scientists, 050094 Bucharest, Romania;
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Foivos E. Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Alin Ciobica
- Academy of Romanian Scientists, 050094 Bucharest, Romania;
- CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- “Ioan Haulica” Institute, Apollonia University, 700511 Iasi, Romania
| |
Collapse
|
4
|
Mohd Rashid MH, Ab Rani NS, Kannan M, Abdullah MW, Ab Ghani MA, Kamel N, Mustapha M. Emotion brain network topology in healthy subjects following passive listening to different auditory stimuli. PeerJ 2024; 12:e17721. [PMID: 39040935 PMCID: PMC11262303 DOI: 10.7717/peerj.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
A large body of research establishes the efficacy of musical intervention in many aspects of physical, cognitive, communication, social, and emotional rehabilitation. However, the underlying neural mechanisms for musical therapy remain elusive. This study aimed to investigate the potential neural correlates of musical therapy, focusing on the changes in the topology of emotion brain network. To this end, a Bayesian statistical approach and a cross-over experimental design were employed together with two resting-state magnetoencephalography (MEG) as controls. MEG recordings of 30 healthy subjects were acquired while listening to five auditory stimuli in random order. Two resting-state MEG recordings of each subject were obtained, one prior to the first stimulus (pre) and one after the final stimulus (post). Time series at the level of brain regions were estimated using depth-weighted minimum norm estimation (wMNE) source reconstruction method and the functional connectivity between these regions were computed. The resultant connectivity matrices were used to derive two topological network measures: transitivity and global efficiency which are important in gauging the functional segregation and integration of brain network respectively. The differences in these measures between pre- and post-stimuli resting MEG were set as the equivalence regions. We found that the network measures under all auditory stimuli were equivalent to the resting state network measures in all frequency bands, indicating that the topology of the functional brain network associated with emotional regulation in healthy subjects remains unchanged following these auditory stimuli. This suggests that changes in the emotion network topology may not be the underlying neural mechanism of musical therapy. Nonetheless, further studies are required to explore the neural mechanisms of musical interventions especially in the populations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Muhammad Hakimi Mohd Rashid
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University, Kuantan, Pahang, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Nur Syairah Ab Rani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Mohammed Kannan
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Department of Anatomy, Faculty of Medicine, Al Neelain University, Khartoum, Khartoum, Sudan
| | - Mohd Waqiyuddin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Muhammad Amiri Ab Ghani
- Jabatan Al-Quran & Hadis, Kolej Islam Antarabangsa Sultan Ismail Petra, Nilam Puri, Kota Bharu, Kelantan, Malaysia
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
5
|
Afnan J, Cai Z, Lina JM, Abdallah C, Delaire E, Avigdor T, Ros V, Hedrich T, von Ellenrieder N, Kobayashi E, Frauscher B, Gotman J, Grova C. EEG/MEG source imaging of deep brain activity within the maximum entropy on the mean framework: Simulations and validation in epilepsy. Hum Brain Mapp 2024; 45:e26720. [PMID: 38994740 PMCID: PMC11240147 DOI: 10.1002/hbm.26720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.
Collapse
Affiliation(s)
- Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Jean-Marc Lina
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edouard Delaire
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| | - Tamir Avigdor
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Victoria Ros
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
| | - Nicolas von Ellenrieder
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean Gotman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
6
|
Duma GM, Cuozzo S, Wilson L, Danieli A, Bonanni P, Pellegrino G. Excitation/Inhibition balance relates to cognitive function and gene expression in temporal lobe epilepsy: a high density EEG assessment with aperiodic exponent. Brain Commun 2024; 6:fcae231. [PMID: 39056027 PMCID: PMC11272395 DOI: 10.1093/braincomms/fcae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.
Collapse
Affiliation(s)
- Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Simone Cuozzo
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Luc Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| |
Collapse
|
7
|
Jacobs J, Klotz KA, Pizzo F, Federico P. Beyond Stereo-EEG: Is It Worth Combining Stereo-EEG With Other Diagnostic Methods? J Clin Neurophysiol 2024; 41:444-449. [PMID: 38935658 DOI: 10.1097/wnp.0000000000001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Stereo-EEG is a widely used method to improve the diagnostic precision of presurgical workup in patients with refractory epilepsy. Its ability to detect epileptic activity and identify epileptic networks largely depends on the chosen implantation strategy. Even in an ideal situation, electrodes record activity generated in <10% of the brain and contacts only record from brain tissue in their immediate proximity. In this article, the authors discuss how recording stereo-EEG simultaneously with other diagnostic methods can improve its diagnostic value in clinical and research settings. It can help overcome the limited spatial coverage of intracranial recording and better understand the sources of epileptic activity. Simultaneous scalp EEG is the most widely available method, often used to understand large epileptic networks, seizure propagation, and EEG activity occurring on the contralateral hemisphere. Simultaneous magnetoencephalography allows for more precise source localization and identification of deep sources outside the stereo-EEG coverage. Finally, simultaneous functional MRI can highlight metabolic changes following epileptic activity and help understand the widespread network changes associated with interictal activity. This overview highlights advantages and methodological challenges for all these methods. Clinical use and research applications are presented for each approach.
Collapse
Affiliation(s)
- Julia Jacobs
- University of Calgary, Calgary, Alberta, Canada
- University Medical Center Freiburg, University of Freiburg, Freiburg, Germany; and
| | | | - Francesca Pizzo
- Epileptology Department, INSERM, Aix Marseille Universite; Marseille, France
| | | |
Collapse
|
8
|
Bonetti L, Fernández-Rubio G, Carlomagno F, Dietz M, Pantazis D, Vuust P, Kringelbach ML. Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding. Nat Commun 2024; 15:4313. [PMID: 38773109 PMCID: PMC11109219 DOI: 10.1038/s41467-024-48302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024] Open
Abstract
Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark.
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom.
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
- Department of Psychology, University of Bologna, Bologna, Italy.
| | - G Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - F Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - M Dietz
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - D Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - M L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Janiukstyte V, Owen TW, Chaudhary UJ, Diehl B, Lemieux L, Duncan JS, de Tisi J, Wang Y, Taylor PN. Normative brain mapping using scalp EEG and potential clinical application. Sci Rep 2023; 13:13442. [PMID: 37596291 PMCID: PMC10439201 DOI: 10.1038/s41598-023-39700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/29/2023] [Indexed: 08/20/2023] Open
Abstract
A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation.
Collapse
Affiliation(s)
- Vytene Janiukstyte
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
| | - Thomas W Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
| | - Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK.
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|