1
|
Jiang Y, Li G, Shao X, Guo H. Simultaneous multislice diffusion imaging using navigator-free multishot spiral acquisitions. Magn Reson Med 2025; 94:73-88. [PMID: 39825518 DOI: 10.1002/mrm.30427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE This work aims to raise a novel design for navigator-free multiband (MB) multishot uniform-density spiral (UDS) acquisition and reconstruction, and to demonstrate its utility for high-efficiency, high-resolution diffusion imaging. THEORY AND METHODS Our design focuses on the acquisition and reconstruction of navigator-free MB multishot UDS diffusion imaging. For acquisition, radiofrequency-pulse encoding was used to achieve controlled aliasing in parallel imaging in MB imaging. For reconstruction, a new algorithm named slice-projection onto convex sets-enhanced inherent correction of phase errors (slice-POCS-ICE) was proposed to simultaneously estimate diffusion-weighted images and intershot phase variations for each slice. The efficacy of the proposed methods was evaluated in both numerical simulation and in vivo experiments. RESULTS In both numerical simulation and in vivo experiments, slice-POCS-ICE estimated phase variations more precisely and provided results with better image quality than other methods. The intershot phase variations and MB slice aliasing artifacts were simultaneously resolved using the proposed slice-POCS-ICE algorithm. CONCLUSION The proposed navigator-free MB multishot UDS acquisition and reconstruction method is an effective solution for high-efficiency, high-resolution diffusion imaging.
Collapse
Affiliation(s)
- Yuancheng Jiang
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guangqi Li
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Feizollah S, Tardif CL. 3D MERMAID: 3D Multi-shot enhanced recovery motion artifact insensitive diffusion for submillimeter, multi-shell, and SNR-efficient diffusion imaging. Magn Reson Med 2025; 93:2311-2330. [PMID: 40035173 PMCID: PMC11971498 DOI: 10.1002/mrm.30436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE To enhance SNR per unit time of diffusion MRI to enable high spatial resolution and extensive q-sampling in a feasible scan time on clinical scanners. METHODS 3D multi-shot enhanced recovery motion-insensitive diffusion (MERMAID) consists of a whole brain nonselective 3D multi-shot spin-echo sequence with an inversion pulse immediately before the excitation pulse to enhance the recovery of longitudinal magnetization. The excitation flip angle is reduced to the Ernst angle. The sequence includes a trajectory using radially batched internal navigator echoes (TURBINE) readout, where a 3D projection of the FOV is acquired at a different radial angle in every shot. An image-based phase-correction method combined with compressed sensing image reconstruction was developed to correct phase errors between shots. The performance of the 3D MERMAID sequence was investigated using Bloch simulations as well as phantom and human scans at 3 T and then compared to a typical multi-slice 2D spin-echo sequence. RESULTS Improvements in SNR per unit time of 70%-240% were observed in phantom and human scans when using 3D MERMAID compared to a single-slice 2D spin-echo sequence. This SNR per unit time improvement allowed scans to be acquired at a nominal isotropic resolution of 0.74 mm and a total of 112 directions across four shells (b = 150, 300, 1000, 2000 s/mm2) in 37 min on a clinical scanner. CONCLUSION The 3D MERMAID sequence was shown to significantly improve SNR per unit time compared to multi-slice 2D and 3D diffusion sequences. This SNR improvement allows for shorter scan times and higher spatial and angular resolutions on clinical scanners.
Collapse
Affiliation(s)
- Sajjad Feizollah
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Christine L. Tardif
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
3
|
Molendowska M, Mueller L, Fasano F, Jones DK, Tax CMW, Engel M. Giving the prostate the boost it needs: Spiral diffusion MRI using a high-performance whole-body gradient system for high b-values at short echo times. Magn Reson Med 2025; 93:1256-1272. [PMID: 39497447 DOI: 10.1002/mrm.30351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/29/2024]
Abstract
PURPOSE To address key issues of low SNR and image distortions in prostate diffusion MRI (dMRI) by means of using strong gradients, single-shot spiral readouts and an expanded encoding model for image reconstruction. METHODS Diffusion-weighted spin echo imaging with EPI and spiral readouts is performed on a whole-body system equipped with strong gradients (up to 250 mT/m). An expanded encoding model including static off-resonance, coil sensitivities, and magnetic field dynamics is employed for image reconstruction. The acquisitions are performed on a phantom and in vivo (one healthy volunteer and one patient with prostate cancer). The resulting images are compared to conventional dMRI EPI with navigator-based image reconstruction and assessed in terms of their congruence, SNR, tissue contrast, and quantitative parameters. RESULTS Using the expanded encoding model, high-quality images of the prostate gland are obtained across all b-values (up to 3 ms/μm2), clearly outperforming the results obtained with conventional image reconstruction. Compared to EPI, spiral imaging provides an SNR gain up to 45% within the gland and even higher in the lesion. In addition, prostate dMRI with single-shot spirals at submillimeter in-plane resolution (0.85 mm) is accomplished. CONCLUSION The combination of strong gradients and an expanded encoding model enables imaging of the prostate with unprecedented image quality. Replacing the commonly used EPI with spirals provides the inherent benefit of shorter echo times and superior readout efficiency and results in higher SNR, which is in particular relevant for considered applications.
Collapse
Affiliation(s)
- Malwina Molendowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Engel
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Veldmann M, Edwards LJ, Pine KJ, Ehses P, Ferreira M, Weiskopf N, Stoecker T. Improving MR axon radius estimation in human white matter using spiral acquisition and field monitoring. Magn Reson Med 2024; 92:1898-1912. [PMID: 38817204 DOI: 10.1002/mrm.30180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-highb $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.
Collapse
Affiliation(s)
- Marten Veldmann
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Mónica Ferreira
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- University of Bonn, Bonn, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Tony Stoecker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- Department of Physics & Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Michael ES, Hennel F, Pruessmann KP. Motion-compensated diffusion encoding in multi-shot human brain acquisitions: Insights using high-performance gradients. Magn Reson Med 2024; 92:556-572. [PMID: 38441339 DOI: 10.1002/mrm.30069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE To evaluate the utility of up to second-order motion-compensated diffusion encoding in multi-shot human brain acquisitions. METHODS Experiments were performed with high-performance gradients using three forms of diffusion encoding motion-compensated through different orders: conventional zeroth-order-compensated pulsed gradients (PG), first-order-compensated gradients (MC1), and second-order-compensated gradients (MC2). Single-shot acquisitions were conducted to correlate the order of motion compensation with resultant phase variability. Then, multi-shot acquisitions were performed at varying interleaving factors. Multi-shot images were reconstructed using three levels of shot-to-shot phase correction: no correction, channel-wise phase correction based on FID navigation, and correction based on explicit phase mapping (MUSE). RESULTS In single-shot acquisitions, MC2 diffusion encoding most effectively suppressed phase variability and sensitivity to brain pulsation, yielding residual variations of about 10° and of low spatial order. Consequently, multi-shot MC2 images were largely satisfactory without phase correction and consistently improved with the navigator correction, which yielded repeatable high-quality images; contrarily, PG and MC1 images were inadequately corrected using the navigator approach. With respect to MUSE reconstructions, the MC2 navigator-corrected images were in close agreement for a standard interleaving factor and considerably more reliable for higher interleaving factors, for which MUSE images were corrupted. Finally, owing to the advanced gradient hardware, the relative SNR penalty of motion-compensated diffusion sensitization was substantially more tolerable than that faced previously. CONCLUSION Second-order motion-compensated diffusion encoding mitigates and simplifies shot-to-shot phase variability in the human brain, rendering the multi-shot acquisition strategy an effective means to circumvent limitations of retrospective phase correction methods.
Collapse
Affiliation(s)
- Eric Seth Michael
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Patriat R, Palnitkar T, Chandrasekaran J, Sretavan K, Braun H, Yacoub E, McGovern RA, Aman J, Cooper SE, Vitek JL, Harel N. DiMANI: diffusion MRI for anatomical nuclei imaging-Application for the direct visualization of thalamic subnuclei. Front Hum Neurosci 2024; 18:1324710. [PMID: 38439939 PMCID: PMC10910100 DOI: 10.3389/fnhum.2024.1324710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
The thalamus is a centrally located and heterogeneous brain structure that plays a critical role in various sensory, motor, and cognitive processes. However, visualizing the individual subnuclei of the thalamus using conventional MRI techniques is challenging. This difficulty has posed obstacles in targeting specific subnuclei for clinical interventions such as deep brain stimulation (DBS). In this paper, we present DiMANI, a novel method for directly visualizing the thalamic subnuclei using diffusion MRI (dMRI). The DiMANI contrast is computed by averaging, voxelwise, diffusion-weighted volumes enabling the direct distinction of thalamic subnuclei in individuals. We evaluated the reproducibility of DiMANI through multiple approaches. First, we utilized a unique dataset comprising 8 scans of a single participant collected over a 3-year period. Secondly, we quantitatively assessed manual segmentations of thalamic subnuclei for both intra-rater and inter-rater reliability. Thirdly, we qualitatively correlated DiMANI imaging data from several patients with Essential Tremor with the localization of implanted DBS electrodes and clinical observations. Lastly, we demonstrated that DiMANI can provide similar features at 3T and 7T MRI, using varying numbers of diffusion directions. Our results establish that DiMANI is a reproducible and clinically relevant method to directly visualize thalamic subnuclei. This has significant implications for the development of new DBS targets and the optimization of DBS therapy.
Collapse
Affiliation(s)
- Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Tara Palnitkar
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Jayashree Chandrasekaran
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Karianne Sretavan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Henry Braun
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Robert A. McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Scott E. Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|