1
|
Wulff-Abramsson A, Zvornik A, Andersen KA, Yang Y, Novén M, Lundbye-Jensen J, Tomasevic L, Karabanov AN. Event-related theta synchronization over sensorimotor areas differs between younger and older adults and is related to bimanual motor control. Neuroimage 2025; 308:121032. [PMID: 39863003 DOI: 10.1016/j.neuroimage.2025.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task. Older (mean age = 68) and younger (mean age = 26) participants performed symmetric (SYM) and asymmetric (ASYM) bimanual pinch force adjustments. Trials began with a visually cued contraction from a baseline force to a novel target force (P1). Force had to be maintained at the target until a visually cued return to the familiar baseline (P2). Older adults reacted slower across task conditions, and their accuracy decreased more when shifting from the SYM to the ASYM condition. Older adults also displayed lower theta ERS across conditions. Additionally, older adults were not able to modulate theta expression based on whether a force change was initiated to a novel target or back to baseline. Younger adults showed significantly stronger theta ERS after P1-cues compared to P2-cues, while the theta response to P1 and P2 cues was not different in older adults. Older adults also showed stronger lateralization, displaying higher theta ERS over the dominant motor cortex. Finally, event-related theta synchronization appeared to be behaviorally relevant across groups and correlated with task performance. Together, the results show that theta ERS over sensorimotor areas is a strong, age-sensitive marker of dynamic pinch force adjustments showing an age-related reduction in specificity with reduced context-dependent modulations and more imbalanced bimanual activation.
Collapse
Affiliation(s)
- Andreas Wulff-Abramsson
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Ana Zvornik
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Keenie Ayla Andersen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences
| | - Mikael Novén
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany; Department of Human Sciences, Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Anke Ninija Karabanov
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| |
Collapse
|
2
|
Hehl M, Malderen SV, Blashchuk S, Sunaert S, Edden RAE, Swinnen SP, Cuypers K. The Reciprocal Relationship Between Short- and Long-Term Motor Learning and Neurometabolites. Hum Brain Mapp 2025; 46:e70170. [PMID: 40035365 PMCID: PMC11877351 DOI: 10.1002/hbm.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Skill acquisition requires practice to stimulate neuroplasticity. Changes in inhibitory and excitatory neurotransmitters, such as gamma-aminobutyric acid (GABA) and glutamate, are believed to play a crucial role in promoting neuroplasticity. Magnetic resonance spectroscopy (MRS) at 3 T, using the MEGA-PRESS sequence, and behavioral data were collected from 62 volunteers. Participants completed a 4-week protocol, practicing either complex (n = 32) or simple (n = 30) bimanual tracking tasks (BTT). Neurotransmitter levels and skill levels at baseline, after 2 and 4 weeks of motor training were compared for the left and right primary sensorimotor cortex (SM1) and the left dorsal premotor cortex (PMd). Furthermore, task-related modulations of neurotransmitter levels in the left PMd were assessed. The study yielded that baseline neurotransmitter levels in motor-related brain regions predicted training success. Furthermore, lower GABA+ (p = 0.0347) and higher Glx (glutamate + glutamine compound) levels (p = 0.0234) in left PMd correlated with better long-term learning of simple and complex tasks, respectively, whereas higher GABA+ in right SM1 correlated with complex task learning (p = 0.0064). Resting neurometabolite levels changed during the intervention: Left SM1 Glx decreased with complex training toward Week 4 (p = 0.0135), whereas right SM1 Glx was increased at Week 2 (p = 0.0043), regardless of training type. Group-level analysis showed no task-related neurometabolite modulation in the left PMd. However, individual baseline GABA+ and Glx modulation influenced short-term motor learning (interaction: p = 0.0213). These findings underscore the importance of an interplay between inhibitory and excitatory neurotransmitters during motor learning and suggest potential for future personalized approaches to optimize motor learning.
Collapse
Affiliation(s)
- Melina Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement SciencesGroup Biomedical Sciences, KU LeuvenHeverleeBelgium
- KU Leuven, Leuven Brain Institute (LBI)LeuvenBelgium
- Neuroplasticity and Movement Control Research GroupRehabilitation Research Institute (REVAL), Hasselt UniversityDiepenbeekBelgium
- Department of Imaging and PathologyGroup Biomedical Sciences, KU LeuvenLeuvenBelgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement SciencesGroup Biomedical Sciences, KU LeuvenHeverleeBelgium
- KU Leuven, Leuven Brain Institute (LBI)LeuvenBelgium
- Neuroplasticity and Movement Control Research GroupRehabilitation Research Institute (REVAL), Hasselt UniversityDiepenbeekBelgium
| | - Svitlana Blashchuk
- Neuroplasticity and Movement Control Research GroupRehabilitation Research Institute (REVAL), Hasselt UniversityDiepenbeekBelgium
| | - Stefan Sunaert
- Department of Imaging and PathologyGroup Biomedical Sciences, KU LeuvenLeuvenBelgium
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement SciencesGroup Biomedical Sciences, KU LeuvenHeverleeBelgium
- KU Leuven, Leuven Brain Institute (LBI)LeuvenBelgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement SciencesGroup Biomedical Sciences, KU LeuvenHeverleeBelgium
- KU Leuven, Leuven Brain Institute (LBI)LeuvenBelgium
- Neuroplasticity and Movement Control Research GroupRehabilitation Research Institute (REVAL), Hasselt UniversityDiepenbeekBelgium
| |
Collapse
|
3
|
Alahmadi A. Functional Connectivity Profiles of Ten Sub-Regions within the Premotor and Supplementary Motor Areas: Insights into Neurophysiological Integration. Diagnostics (Basel) 2024; 14:1990. [PMID: 39272774 PMCID: PMC11394331 DOI: 10.3390/diagnostics14171990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Objectives: This study aimed to comprehensively investigate the functional connectivity of ten sub-regions within the premotor and supplementary motor areas (Right and Left Premotor 6d1, 6d2, 6d3, and Right and Left pre-Supplementary Motor (presma) and SMA). Using advanced magnetic resonance imaging (MRI), the objective was to understand the neurophysiological integrative characteristics of these regions by examining their connectivity with eight distinct functional brain networks. While previous studies have largely treated these areas as homogeneous entities, there is a significant gap in our understanding of the specific roles and connectivity profiles of their distinct sub-regions. The goal was to uncover the roles of these regions beyond conventional motor functions, contributing to a more holistic understanding of brain functioning. Methods: The study involved 198 healthy volunteers, with the primary methodology being functional connectivity analysis using advanced MRI techniques. Ten sub-regions within the premotor and supplementary motor areas served as seed regions, and their connectivity with eight distinct brain regional functional networks, including the Sensorimotor, Dorsal Attention, Language, Frontoparietal, Default Mode, Cerebellar, Visual, and Salience networks, was investigated. This approach allowed for the exploration of synchronized activity between these critical brain areas, shedding light on their integrated functioning and relationships with other brain networks. Results: The study revealed a nuanced landscape of functional connectivity for the premotor and supplementary motor areas with the main functional brain networks. Despite their high functional connectedness within the motor network, these regions displayed diverse functional integrations with other networks. There was moderate connectivity with the Sensorimotor and Dorsal Attention networks, highlighting their roles in motor execution and attentional processes. However, connectivity with the Language, Frontoparietal, Default Mode, Cerebellar, Visual, and Salience networks was generally low, indicating a primary focus on motor-related tasks. Conclusions: This study emphasized the multifaceted roles of the sub-regions of the premotor and supplementary motor areas. Beyond their crucial involvement in motor functions, these regions exhibited varied functional integrations with different brain networks. The observed disparities, especially in the Sensorimotor and Dorsal Attention networks, indicated a nuanced and specialized involvement of these regions in diverse cognitive functions. By delineating the specific connectivity profiles of these sub-regions, this study addresses the existing knowledge gap and suggests unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor functions. The results suggested unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor functions. This study underscores the importance of considering the broader neurophysiological landscape to comprehend the intricate roles of these brain areas, contributing to ongoing efforts in unravelling the complexities of brain function.
Collapse
Affiliation(s)
- Adnan Alahmadi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Wang H, Liu Y, Ding Y. Identifying Diagnostic Biomarkers for Autism Spectrum Disorder From Higher-order Interactions Using the PED Algorithm. Neuroinformatics 2024; 22:285-296. [PMID: 38771433 DOI: 10.1007/s12021-024-09662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 05/22/2024]
Abstract
In the field of neuroimaging, more studies of abnormalities in brain regions of the autism spectrum disorder (ASD) usually focused on two brain regions connected, and less on abnormalities of higher-order interactions of brain regions. To explore the complex relationships of brain regions, we used the partial entropy decomposition (PED) algorithm to capture higher-order interactions by computing the higher-order dependencies of all three brain regions (triads). We proposed a method for examining the effect of individual brain regions on triads based on the PED and surrogate tests. The key triads were discovered by analyzing the effects. Further, the hypergraph modularity maximization algorithm revealed the higher-order brain structures, of which the link between right thalamus and left thalamus in ASD was more loose compared with the typical control (TC). Redundant key triad (left cerebellum crus 1 and left precuneus and right inferior occipital gyrus) exhibited a discernible attenuation in interaction in ASD, while the synergistic key triad (right cerebellum crus 1 and left postcentral gyrus and left lingual gyrus) indicated a notable decline. The results of classification model further confirmed the potential of the key triads as diagnostic biomarkers.
Collapse
Affiliation(s)
- Hao Wang
- School of Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanting Liu
- School of Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Zvornik A, Andersen KA, Petersen AD, Novén M, Siebner HR, Lundbye-Jensen J, Karabanov AN. Older and younger adults differ in time course of skill acquisition but not in overall improvement in a bimanual visuomotor tracking task. Front Aging Neurosci 2024; 16:1373252. [PMID: 38665899 PMCID: PMC11043555 DOI: 10.3389/fnagi.2024.1373252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Manual motor performance declines with age, but the extent to which age influences the acquisition of new skills remains a topic of debate. Here, we examined whether older healthy adults show less training-dependent performance improvements during a single session of a bimanual pinch task than younger adults. We also explored whether physical and cognitive factors, such as grip strength or motor-cognitive ability, are associated with performance improvements. Healthy younger (n = 16) and older (n = 20) adults performed three training blocks separated by short breaks. Participants were tasked with producing visually instructed changes in pinch force using their right and left thumb and index fingers. Task complexity was varied by shifting between bimanual mirror-symmetric and inverse-asymmetric changes in pinch force. Older adults generally displayed higher visuomotor force tracking errors during the more complex inverse-asymmetric task compared to younger adults. Both groups showed a comparable net decrease in visuomotor force tracking error over the entire session, but their improvement trajectories differed. Young adults showed enhanced visuomotor tracking error only in the first block, while older adults exhibited a more gradual improvement over the three training blocks. Furthermore, grip strength and performance on a motor-cognitive test battery scaled positively with individual performance improvements during the first block in both age groups. Together, the results show subtle age-dependent differences in the rate of bimanual visuomotor skill acquisition, while overall short-term learning ability is maintained.
Collapse
Affiliation(s)
- Ana Zvornik
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Keenie Ayla Andersen
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Deigaard Petersen
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Novén
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anke Ninija Karabanov
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|