1
|
Goetschalckx M, Feys P, Rameckers E, Moens B, Vanbilsen N, Leman M, Moumdjian L. Auditory-motor synchronization and interlimb coordination when walking to metronomes with different tempi and structures: A comparison study of children with and without Developmental Coordination Disorder. Gait Posture 2025; 121:139-149. [PMID: 40378690 DOI: 10.1016/j.gaitpost.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2025] [Accepted: 04/29/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder affecting motor coordination, impacting daily-life activities like walking. Accurate sensorimotor interactions are crucial for optimal coordination. Auditory-motor synchronization paradigms allow to examine these interactions with tempo and temporal structure of auditory stimuli potentially influencing synchronization and coordination. Therefore, this study aims to investigate auditory-motor synchronization and interlimb coordination in children with DCD and typically developing children (TDC) during walking. RESEARCH QUESTION What is the impact of metronome characteristics (tempo, temporal structure) on auditory-motor synchronization, interlimb coordination and spatiotemporal variability in children with and without DCD during walking to auditory metronomes? METHODS Twenty-one DCD and 22 TDC children walked for three minutes to auditory metronomes with different tempi and temporal structures. Synchronization, interlimb coordination and spatiotemporal variability were analyzed using mixed model analysis. RESULTS DCD presented lower synchronization consistency, inferior interlimb coordination and higher gait variability (speed, step length) across all tempi and temporal structures. At preferred tempo, both groups demonstrated best synchronization and interlimb coordination. The least synchronization and coordination were observed at lower tempo, with DCD additionally showing diminished tempo matching and increased cadence variability. Discrete structures optimized synchronization accuracy and continuous structures enhanced interlimb coordination accuracy. CONCLUSION The study highlights difficulties in auditory-motor synchronization, interlimb coordination and spatiotemporal variability in DCD during walking, which were enlarged at lower tempo. Considering various tempi and temporal structures can enrich walking assessments and protentional interventions for DCD. WHAT THIS PAPER ADDS This paper contributes to the understanding of auditory-motor synchronization and interlimb coordination in children with Developmental Coordination Disorder (DCD) and typically developing children (TDC) during walking. This study expands previous research by exploring the impact of varied tempi and temporal structures on synchronization and interlimb coordination, which has been a relatively unexplored area in the context of DCD. The key findings suggest that children with DCD exhibit lower synchronization consistency and interlimb coordination compared to their typically developing peers across different tempi and temporal structures. We extend previous findings of tapping literature that optimal synchronization and coordination was present at 0 % tempo. Additionally, worsened performance was found at lower auditory tempi (-10 %) than their preferred walking tempo. In summary, this paper adds significant knowledge to the field by addressing the impact of auditory stimuli characteristics on motor coordination in children with DCD, contributing to the development of effective interventions for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Mieke Goetschalckx
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium.
| | - Peter Feys
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Eugene Rameckers
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; Department of rehabilitation medicine, CAPHRI, FHML, CAPHRI, Maastricht University, Maastricht, the Netherlands; Centre of Expertise, Adelante Rehabilitation Centre, Valkenburg, the Netherlands
| | - Bart Moens
- IPEM, Institute of Psychoacoustic and Electronic music, Faculty of Art and Philosophy, Gent University, Gent, Belgium
| | - Nele Vanbilsen
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Marc Leman
- IPEM, Institute of Psychoacoustic and Electronic music, Faculty of Art and Philosophy, Gent University, Gent, Belgium
| | - Lousin Moumdjian
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; IPEM, Institute of Psychoacoustic and Electronic music, Faculty of Art and Philosophy, Gent University, Gent, Belgium
| |
Collapse
|
2
|
Yuan Z, Ransbeeck WV, Wiggins GA, Botteldooren D. A Dynamic Systems Approach to Modeling Human-Machine Rhythm Interaction. IEEE TRANSACTIONS ON CYBERNETICS 2025; 55:2052-2064. [PMID: 40131747 DOI: 10.1109/tcyb.2025.3547216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Rhythm is an inherent aspect of human behavior, present from infancy and embedded in cultural practices. At the core of rhythm perception lies meter anticipation, a spontaneous process in the human brain that typically occurs before actual beats. This anticipation can be framed as a time series prediction problem. From the perspective of human embodied system behavior, although many models have been developed for time series prediction, most prioritize accuracy over biological realism, contrasting with the natural imprecision of human internal clocks. Neuroscientific evidence, such as infants' natural meter synchronization, underscores the need for biologically plausible models. Therefore, we propose a neuron oscillator-based dynamic system that simulates human behavior during meter perception. The model introduces two tunable parameters for local and global adjustments, fine-tuning the oscillation combinations to emulate human-like rhythmic behavior. The experiments are conducted under three common scenarios encountered during human-machine interaction, demonstrating that the proposed model can exhibit human-like reactions. Additionally, experiments involving human-machine and interhuman interactions show that the model successfully replicates real-world rhythmic behavior, advancing toward more natural and synchronized human-machine rhythm interaction.
Collapse
|
3
|
Mondok C, Wiener M. A coupled oscillator model predicts the effect of neuromodulation and a novel human tempo-matching bias. J Neurophysiol 2025; 133:1607-1617. [PMID: 40298211 DOI: 10.1152/jn.00348.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Humans are known to exhibit endogenous neural oscillations in response to rhythmic stimuli that are phase-locked and frequency matched to those stimuli, a process known as entrainment. Yet, whether entrainment, as measured by electrophysiological recordings, reflects actual processing of rhythms or merely a reflection of the periodic nature of the stimulus is debated. Prior evidence for entrainment as a perceptual phenomenon comes from studies requiring subjects to listen to, compare sequentially, or detect features in rhythmic stimuli. However, one paradigm so far not used is one where subjects must listen to two simultaneous rhythms at different frequencies and adjust them to match. Here, human participants performed this task during EEG recordings (experiment 1), demonstrating spectral peaks at both tempo frequencies at frontocentral electrodes that shifted into alignment over the course of each trial. Behaviorally, participants tended to anchor the matched tempo to the starting comparison frequency, such that they underestimated the tempo for slower initial conditions and overestimated for faster initial conditions. A model of phase-coupled oscillators, in which both tempos were pulled toward one another, replicated both effects. This model further predicted that by enhancing the coupling strength of the constant tempo oscillator, both bias effects could be reduced. To test this, a second group of subjects performed the task while receiving 2 Hz transcranial alternating current stimulation (tACS) to the frontocentral region. Consistent with model predictions, tACS attenuated both behavioral effects, particularly for initially slower conditions. These results support entrainment as an endogenous process that mediates beat perception.NEW & NOTEWORTHY This work proposes how humans perceive the difference between two simultaneously presented tempos and bring them into perceived synchrony. EEG data provide evidence of entrainment to both tempos that move into alignment, and transcranial alternating current stimulation (tACS) data provide causal evidence that strengthening one tempo improves performance.
Collapse
Affiliation(s)
- Chloe Mondok
- Department of Psychology, George Mason University, Fairfax, Virginia, United States
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, Virginia, United States
| |
Collapse
|
4
|
Moumdjian L, Feys P, Moens B, Manto M, Cabaraux P, Van Weijmeersch B, Kotz SA, Leman M, Rosso M. The effect of stimulus type and tempo on sensorimotor synchronization during finger-tapping in cerebellar ataxia: Behavioral and neural evidence. Cortex 2025; 187:111-123. [PMID: 40318390 DOI: 10.1016/j.cortex.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Sensorimotor synchronization, coordination of movements with external rhythms, occurs daily. Finger-tapping tasks are often used to study biological mechanisms underlying sensorimotor synchronization. This study investigates how deviations in auditory stimulus tempo from spontaneous motor tempo affect sensorimotor synchronization in patients with cerebellar ataxia during active listening and finger-tapping. Specifically, the cerebellum's role in these tasks is investigated by quantifying behavioral and neural dynamics of auditory-motor coupling. Sixteen patients with cerebellar ataxia and 14 healthy controls listened and tapped to music and metronomes at seven tempi (-12%, -8%, -4%, 0%, +4%, +8%, +12% of spontaneous tapping tempo) in randomized order. Sixty-four channel EEG, stimulus beat- and finger-tapping onsets were recorded during each trial. Behavioral synchronization was quantified by synchronization precision and accuracy, whereas neural entrainment was quantified with the stability index. Cerebellar patients displayed higher, more variable spontaneous tapping tempi than controls. Although precision was lower in patients than controls, they achieved high precision values. Differences in synchronizing between metronomes and music were observed for both precision and accuracy, favoring metronomes in both groups. Accuracy was impacted, with lowest asynchrony observed in patients with music, and across groups at the slowest tempi (-12%) and highest tempi (4, 8 and 10%). EEG results revealed greater stability for music during tapping. Although patients with cerebellar ataxia showed synchronization deficits, they could sufficiently synchronize with isochronous metronomes and music containing higher complexity, likely through sensory accumulation as a compensation strategy. These findings support the use of sensorimotor synchronization strategies in rehabilitation for cerebellar disorders.
Collapse
Affiliation(s)
- Lousin Moumdjian
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium; University Multiple Sclerosis Center (UMSC), Hasselt-Pelt, Belgium.
| | - Peter Feys
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; University Multiple Sclerosis Center (UMSC), Hasselt-Pelt, Belgium
| | - Bart Moens
- IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, Charleroi, Belgium; Service des Neurosciences, University of Mons, Mons, Belgium
| | - Pierre Cabaraux
- Neurological Rehabilitation Ward, Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Bart Van Weijmeersch
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; University Multiple Sclerosis Center (UMSC), Hasselt-Pelt, Belgium; Noorderhart Hospitals, Rehabilitaion & MS, Pelt, Belgium
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marc Leman
- IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium
| | - Mattia Rosso
- IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| |
Collapse
|
5
|
Wei Y, Meng J, Luo R, Mai X, Li S, Xia Y, Zhu X. Action Observation With Rhythm Imagery (AORI): A Novel Paradigm to Activate Motor-Related Pattern for High-Performance Motor Decoding. IEEE Trans Biomed Eng 2025; 72:1085-1096. [PMID: 39466862 DOI: 10.1109/tbme.2024.3487133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
OBJECTIVE The Motor Imagery (MI) paradigm has been widely used in brain-computer interface (BCI) for device control and motor rehabilitation. However, the MI paradigm faces challenges such as comprehension difficulty and limited decoding accuracy. Therefore, we propose the Action Observation with Rhythm Imagery (AORI) as a natural paradigm to provide distinct features for high-performance decoding. METHODS Twenty subjects were recruited in the current study to perform the AORI task. Spectral-spatial, temporal and time-frequency analyses were conducted to investigate the AORI-activated brain pattern. Task-discriminant component analysis (TDCA) was utilized to perform multiclass motor decoding. RESULTS The results demonstrated distinct lateralized ERD in the alpha and beta bands, and clear lateralized steady-state movement-related rhythm (SSMRR) at the movement frequencies and their first harmonics. The activated brain areas included frontal, sensorimotor, posterior parietal, and occipital regions. Notably, the decoding accuracy reached 92.16% ± 7.61% in the four-class scenario. CONCLUSION AND SIGNIFICANCE We proposed the AORI paradigm, revealed the activated motor-related pattern and proved its efficacy for high-performance motor decoding. These findings provide new possibilities for designing a natural and robust BCI for motor control and motor rehabilitation.
Collapse
|
6
|
Xu Y, Tan X, Luo M, Xie Q, Yang F, Zhan CA. Reliable quantification of neural entrainment to rhythmic auditory stimulation: simulation and experimental validation. J Neural Eng 2025; 22:016026. [PMID: 39870044 DOI: 10.1088/1741-2552/adaeec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Objective.Entrainment has been considered as a potential mechanism underlying the facilitatory effect of rhythmic neural stimulation on neurorehabilitation. The inconsistent effects of brain stimulation on neurorehabilitation found in the literature may be caused by the variability in neural entrainment. To dissect the underlying mechanisms and optimize brain stimulation for improved effectiveness, it is critical to reliably assess the occurrence and the strength of neural entrainment. However, the factors influencing entrainment assessment are not yet fully understood. This study aims to investigate whether and how the relevant factors (i.e. data length, frequency bandwidth, signal-to-noise ratio (SNR), center frequency, and the constant component of stimulus-response phase-difference) influence the assessment reliability of neural entrainment.Approach.We simulated data for 28 scenarios to answer above questions. We also recorded experimental data to verify the findings from our simulation study.Main results.A minimal data length is required to achieve reliable neural entrainment assessment, and this requirement critically depends on the bandwidth and SNR, but is independent of the center frequency and the constant component of stimulus-response phase-difference. Furthermore, changing of bandwidth is accompanied by the change of SNR.Significance.The present study has revealed how data length, bandwidth, and SNR critically affect the assessment reliability of neural entrainment. The findings provide a foundation for the parameter setting in experiment design and data analysis in neural entrainment studies. While this study is within the context of rhythmic auditory stimulation, the conclusions may be applicable for neural entrainment to other rhythmic stimulations.
Collapse
Affiliation(s)
- Yiwen Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiaodan Tan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Minmin Luo
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Qiuyou Xie
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Feng Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Chang'an A Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| |
Collapse
|
7
|
Huang LZ, Qi Z. Neurobiological mechanism of music improving gait disorder in patients with Parkinson's disease: a mini review. Front Neurol 2025; 15:1502561. [PMID: 39830207 PMCID: PMC11738927 DOI: 10.3389/fneur.2024.1502561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Walking ability is essential for human survival and health. Its basic rhythm is mainly generated by the central pattern generator of the spinal cord. The rhythmic stimulation of music to the auditory center affects the cerebral cortex and other higher nerve centers, and acts on the central pattern generator. By means of rhythm entrainment, the central pattern generator can produce walking rhythm synchronized with music rhythm, control muscle tension, and then regulate human gait. Basal ganglia dysfunction is the main cause of abnormal gait in patients with Parkinson's disease. Music therapy provides external rhythmic stimulation, recruits neural networks to bypass the basal ganglia and synchronizes gait with external rhythms in both time and space through auditory-motor neural networks, helping to promote the improvement of abnormal gait patterns in patients with Parkinson's disease.
Collapse
Affiliation(s)
| | - Zhi Qi
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Lenc T, Lenoir C, Keller PE, Polak R, Mulders D, Nozaradan S. Measuring self-similarity in empirical signals to understand musical beat perception. Eur J Neurosci 2025; 61:e16637. [PMID: 39853878 PMCID: PMC11760665 DOI: 10.1111/ejn.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses. Here, we propose a theoretical framework and practical implementation of an analytic approach to capture beat-related periodicity in empirical signals using frequency-tagging. We highlight its sensitivity in measuring the extent to which the periodicity of a perceived beat is represented in a range of continuous time-varying signals with minimal assumptions. We also discuss a limitation of this approach with respect to its specificity when restricted to measuring beat-related periodicity only from the magnitude spectrum of a signal and introduce a novel extension of the approach based on autocorrelation to overcome this issue. We test the new autocorrelation-based method using simulated signals and by re-analyzing previously published data and show how it can be used to process measurements of brain activity as captured with surface EEG in adults and infants in response to rhythmic inputs. Taken together, the theoretical framework and related methodological advances confirm and elaborate the frequency-tagging approach as a promising window into the processes underlying beat perception and, more generally, temporally coordinated behaviors.
Collapse
Affiliation(s)
- Tomas Lenc
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
- Basque Center on Cognition, Brain and Language (BCBL)Donostia‐San SebastianSpain
| | - Cédric Lenoir
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
| | - Peter E. Keller
- MARCS Institute for Brain, Behaviour and DevelopmentWestern Sydney UniversitySydneyAustralia
- Center for Music in the Brain & Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rainer Polak
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and MotionUniversity of OsloOsloNorway
- Department of MusicologyUniversity of OsloOsloNorway
| | - Dounia Mulders
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
- Computational and Biological Learning Unit, Department of EngineeringUniversity of CambridgeCambridgeUK
- Institute for Information and Communication TechnologiesElectronics and Applied Mathematics, UCLouvainLouvain‐la‐NeuveBelgium
- Department of Brain and Cognitive Sciences and McGovern InstituteMassachusetts Institute of Technology (MIT)CambridgeMassachusettsUSA
| | - Sylvie Nozaradan
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealCanada
| |
Collapse
|
9
|
Barbaresi M, Nardo D, Fagioli S. Physiological Entrainment: A Key Mind-Body Mechanism for Cognitive, Motor and Affective Functioning, and Well-Being. Brain Sci 2024; 15:3. [PMID: 39851371 PMCID: PMC11763407 DOI: 10.3390/brainsci15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The human sensorimotor system can naturally synchronize with environmental rhythms, such as light pulses or sound beats. Several studies showed that different styles and tempos of music, or other rhythmic stimuli, have an impact on physiological rhythms, including electrocortical brain activity, heart rate, and motor coordination. Such synchronization, also known as the "entrainment effect", has been identified as a crucial mechanism impacting cognitive, motor, and affective functioning. OBJECTIVES This review examines theoretical and empirical contributions to the literature on entrainment, with a particular focus on the physiological mechanisms underlying this phenomenon and its role in cognitive, motor, and affective functions. We also address the inconsistent terminology used in the literature and evaluate the range of measurement approaches used to assess entrainment phenomena. Finally, we propose a definition of "physiological entrainment" that emphasizes its role as a fundamental mechanism that encompasses rhythmic interactions between the body and its environment, to support information processing across bodily systems and to sustain adaptive motor responses. METHODS We reviewed the recent literature through the lens of the "embodied cognition" framework, offering a unified perspective on the phenomenon of physiological entrainment. RESULTS Evidence from the current literature suggests that physiological entrainment produces measurable effects, especially on neural oscillations, heart rate variability, and motor synchronization. Eventually, such physiological changes can impact cognitive processing, affective functioning, and motor coordination. CONCLUSIONS Physiological entrainment emerges as a fundamental mechanism underlying the mind-body connection. Entrainment-based interventions may be used to promote well-being by enhancing cognitive, motor, and affective functions, suggesting potential rehabilitative approaches to enhancing mental health.
Collapse
Affiliation(s)
| | - Davide Nardo
- Department of Education, “Roma Tre” University, 00185 Rome, Italy; (M.B.); (S.F.)
| | | |
Collapse
|
10
|
Li CW, Tsai CG. The presence of drum and bass modulates responses in the auditory dorsal pathway and mirror-related regions to pop songs. Neuroscience 2024; 562:24-32. [PMID: 39447670 DOI: 10.1016/j.neuroscience.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
In pop music, drum and bass components are crucial for generating the desire to move one's body, primarily due to their role in delivering salient metrical cues. This study explored how the presence of drum and bass influences neural responses to unfamiliar pop songs. Using AI-based algorithms, we isolated the drum and bass components from the musical excerpts, creating two additional versions: one that included only the drum and bass (excluding vocals and other instruments), and another that excluded the drum and bass (consisting solely of vocals and other instruments). Twenty-five participants were subjected to fMRI scans while listening to these musical stimuli. Analysis of fMRI data indicated that the removal of drum and bass led to increased activity in the auditory dorsal pathway, suggesting that the absence of these metrical cues demands greater cognitive effort to process the beats. In contrast, the version featuring only drum and bass elicited stronger activation in frontal regions associated with mirror properties, including the right ventral premotor cortex (extending into the inferior frontal gyrus) and left dorsolateral prefrontal cortex, compared to the original version. Overall, this study contributed insights into the foundational role of drum and bass in imparting metrical salience to pop songs, enriching our understanding of listeners' sensorimotor processing of musical genres that prominently feature these two elements.
Collapse
Affiliation(s)
- Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Zheng Z, Wang J. Interbrain neural correlates of self and other integration in joint statistical learning. NPJ SCIENCE OF LEARNING 2024; 9:68. [PMID: 39567522 PMCID: PMC11579319 DOI: 10.1038/s41539-024-00280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
While statistical learning is often studied individually, its collective representation through self-other integration remains unclear. This study examines dynamic self-other integration and its multi-brain mechanism using simultaneous recordings from dyads. Participants (N = 112) each repeatedly responded to half of a fixed stimulus sequence with either an active partner (joint context) or a passive observer (baseline context). Significant individual statistical learning was evident in the joint context, characterized by decreased reaction time (RT) and intra-brain neural responses, followed by a quadratic trend (i.e., first increasing and then decreasing) upon insertion of an interference sequence. More importantly, Brain-to-Brain Coupling (BtBC) in the theta band also showed learning and modulation-related trends, with its slope negatively and positively correlating with the slopes of RT and intra-brain functional connectivity, respectively. These results highlight the dynamic nature of self-other integration in joint statistical learning, with statistical regularities implicitly and spontaneously modulating this process. Notably, the BtBC serves as a key neural correlate underlying the dynamics of self-other integration.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Jun Wang
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China.
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, People's Republic of China.
| |
Collapse
|
12
|
Silva AD, Laje R. Perturbation context in paced finger tapping tunes the error-correction mechanism. Sci Rep 2024; 14:27473. [PMID: 39523377 PMCID: PMC11551152 DOI: 10.1038/s41598-024-78786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Sensorimotor synchronization (SMS) is the mainly specifically human ability to move in sync with a periodic external stimulus, as in keeping pace with music. The most common experimental paradigm to study its largely unknown underlying mechanism is the paced finger-tapping task, where a participant taps to a periodic sequence of brief stimuli. Contrary to reaction time, this task involves temporal prediction because the participant needs to trigger the motor action in advance for the tap and the stimulus to occur simultaneously, then an error-correction mechanism takes past performance as input to adjust the following prediction. In a different, simpler task, it has been shown that exposure to a distribution of individual temporal intervals creates a "temporal context" that can bias the estimation/production of a single target interval. As temporal estimation and production are also involved in SMS, we asked whether a paced finger-tapping task with period perturbations would show any time-related context effect. In this work we show that a perturbation context can indeed be generated by exposure to period perturbations during paced finger tapping, affecting the shape and size of the resynchronization curve. Response asymmetry is also affected, thus evidencing an interplay between context and intrinsic nonlinearities of the correction mechanism. We conclude that perturbation context calibrates the underlying error-correction mechanism in SMS.
Collapse
Affiliation(s)
- Ariel D Silva
- Sensorimotor Dynamics Lab, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- CONICET, Buenos Aires, Argentina
| | - Rodrigo Laje
- Sensorimotor Dynamics Lab, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
- CONICET, Buenos Aires, Argentina.
- Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Niu R, Xu X, Tang W, Xiao Y, Tang R. Dance of two brains: Interval subdivision in alternated condition enhances resistance to interference by others. Neuroimage 2024; 298:120788. [PMID: 39147295 DOI: 10.1016/j.neuroimage.2024.120788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The accomplishment of interpersonal sensorimotor synchronization is a challenging endeavor because it requires the achievement of a balance between accurate temporal control within individuals and smooth communication between them. This raises a critical question: How does the brain comprehend and process the perceptual information of others to guarantee accurate temporal control of action goals in a social context? A joint synchronization - continuation tapping task was conducted together with varying relative phases (0°/180°) and intervals of tempos (400 ms/800 ms/1600 ms) while neural data was collected using fNIRS (functional near-infrared spectroscopy). Individuals showed better behavioral performance and greater interpersonal brain synchronization(IBS) in the left dorsolateral prefrontal cortex at alternated condition (180° relative phase) compared to symmetric condition (0° relative phase), suggesting that the individual can better maintain behavioral performance and show improved IBS when the partner taps between the individual's gaps. Meanwhile, in most levels of alternated condition, IBS is inversely proportional to interference from partner, implying the counteraction of IBS against interference from others. In addition, when the interval of tempo was 1600 ms, behavioral performance showed a sharp decline, accompanied by a decrease in IBS, reflecting that IBS in SMS reflects effective information exchange between individuals rather than ineffective interference with each other. This study provides insight into the mechanisms underlying sensorimotor synchronization between individuals.
Collapse
Affiliation(s)
- Ruoyu Niu
- Department of Psychology, Nanjing University, Nanjing 210023, China
| | - Xiaodan Xu
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Weicai Tang
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Yi Xiao
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China.
| | - Rixin Tang
- Department of Psychology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Goheen J, Wolman A, Angeletti LL, Wolff A, Anderson JAE, Northoff G. Dynamic mechanisms that couple the brain and breathing to the external environment. Commun Biol 2024; 7:938. [PMID: 39097670 PMCID: PMC11297933 DOI: 10.1038/s42003-024-06642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Brain and breathing activities are closely related. However, the exact neurophysiological mechanisms that couple the brain and breathing to stimuli in the external environment are not yet agreed upon. Our data support that synchronization and dynamic attunement are two key mechanisms that couple local brain activity and breathing to external periodic stimuli. First, we review the existing literature, which provides strong evidence for the synchronization of brain and breathing in terms of coherence, cross-frequency coupling and phase-based entrainment. Second, using EEG and breathing data, we show that both the lungs and localized brain activity at the Cz channel attune the temporal structure of their power spectra to the periodic structure of external auditory inputs. We highlight the role of dynamic attunement in playing a key role in coordinating the tripartite temporal alignment of localized brain activity, breathing and input dynamics across longer timescales like minutes. Overall, this perspective sheds light on potential mechanisms of brain-breathing coupling and its alignment to stimuli in the external environment.
Collapse
Affiliation(s)
- Josh Goheen
- Carleton University, Ottawa, Canada.
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada.
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
| | - Lorenzo Lucherini Angeletti
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
- University of Florence, Florence, Italy
| | | | | | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
| |
Collapse
|
15
|
Rosso M, Gener CN, Moens B, Maes PJ, Leman M. Perceptual coupling in human dyads: Kinematics does not affect interpersonal synchronization. Heliyon 2024; 10:e33831. [PMID: 39027589 PMCID: PMC11255578 DOI: 10.1016/j.heliyon.2024.e33831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The minimal, essential condition for individuals to interact is that they exchange information via at least one sensory channel. Once informational coupling is established, it enables basic forms of coordinated behavior to spontaneously emerge from the interaction. Our previous study revealed different coordination dynamics in dyads engaged in a joint finger-tapping task based on visual versus auditory coupling. This observation led us to propose the 'modality-dependent hypothesis', which posits that coordination dynamics are influenced by the sensory modality mediating informational coupling. However, recognizing that different modalities have inherent differences in accessing spatiotemporal features of perceived movement, we formulated the alternative 'kinematic hypothesis'. This hypothesis posits that differences in dynamics would vanish given equivalent kinematic information across modalities. The study involved forty (N = 40) participants, grouped into twenty (N = 20) dyads, who engaged in a joint finger-tapping task. This task was conducted under varying conditions of visual and auditory coupling, with manipulations in the access to kinematic information, categorized as discrete and continuous. Contrary to our initial predictions, the results strongly supported the 'modality-dependent hypothesis'. We observed that visual and auditory coupling consistently yielded distinct attractor dynamics, regardless of the access to kinematic information. Furthermore, all conditions of auditory coupling resulted in higher levels of synchronization than their visual counterparts. These findings suggest that the differences in interpersonal synchronization are predominantly influenced by the sensory modality, rather than the continuity of kinematic information. Our study highlights the significance of sensorimotor interactions in interpersonal synchronization and addresses the potential of sonification strategies in supporting motor training and rehabilitation.
Collapse
Affiliation(s)
- Mattia Rosso
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Canan Nuran Gener
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Bart Moens
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Pieter-Jan Maes
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Marc Leman
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| |
Collapse
|
16
|
LaGasse B, Yoo GE, Hardy MW. Rhythm and music for promoting sensorimotor organization in autism: broader implications for outcomes. Front Integr Neurosci 2024; 18:1403876. [PMID: 39040594 PMCID: PMC11260726 DOI: 10.3389/fnint.2024.1403876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Emerging research suggests that music and rhythm-based interventions offer promising avenues for facilitating functional outcomes for autistic individuals. Evidence suggests that many individuals with ASD have music processing and production abilities similar to those of neurotypical peers. These individual strengths in music processing and production may be used within music therapy with a competence-based treatment approach. We provide an updated perspective of how music and rhythm-based interventions promote sensory and motor regulation, and how rhythm and music may then impact motor, social, and communicative skills. We discuss how music can engage and motivate individuals, and can be used intentionally to promote skill acquisition through both structured and flexible therapeutic applications. Overall, we illustrate the potential of music and rhythm as valuable tools in addressing skill development in individuals on the autism spectrum.
Collapse
Affiliation(s)
- Blythe LaGasse
- School of Music, Theatre, and Dance, Colorado State University, Fort Collins, CO, United States
| | - Ga Eul Yoo
- Department of Music Therapy, Graduate School, Ewha Womans University, Seoul, Republic of Korea
| | - Michelle Welde Hardy
- School of Music, Theatre, and Dance, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Mead D, Reed K, Hoque A. The Haptic Metronome: A Study on Steady Tempo. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40040124 DOI: 10.1109/embc53108.2024.10781917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
One of the most prevalent issues that plagues aspiring (and professional) musicians is maintaining a steady tempo. The remedy is often hours of practice under the guidance of a steady auditory metronome. With experience, a feedback loop between the sound of the metronome and that of the instrument is optimized to minimize error. However, there are instances where an auditory metronome is not feasible and other modalities may provide an alternate approach to deliver the rhythmic cues, e.g., tactile metronomes. The effectiveness of tactile cues in drumming was tested and compared against auditory and combined (tactile and auditory) modalities between subject groups with disparate rhythm abilities. Although the haptic metronome was not able to reduce each subject's asynchrony as effectively as the auditory metronome, it was statistically proven to be effective at maintaining tempo. These outcomes may be utilized in live performances where a standard metronome is impractical, for musicians with disabilities who are unable to respond to auditory stimuli, and in motor rehabilitation that utilizes rhythmic cues.
Collapse
|
18
|
Michałko A, Di Stefano N, Campo A, Leman M. Enhancing human-human musical interaction through kinesthetic haptic feedback using wearable exoskeletons: theoretical foundations, validation scenarios, and limitations. Front Psychol 2024; 15:1327992. [PMID: 38515976 PMCID: PMC10954903 DOI: 10.3389/fpsyg.2024.1327992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
In this perspective paper, we explore the use of haptic feedback to enhance human-human interaction during musical tasks. We start by providing an overview of the theoretical foundation that underpins our approach, which is rooted in the embodied music cognition framework, and by briefly presenting the concepts of action-perception loop, sensorimotor coupling and entrainment. Thereafter, we focus on the role of haptic information in music playing and we discuss the use of wearable technologies, namely lightweight exoskeletons, for the exchange of haptic information between humans. We present two experimental scenarios in which the effectiveness of this technology for enhancing musical interaction and learning might be validated. Finally, we briefly discuss some of the theoretical and pedagogical implications of the use of technologies for haptic communication in musical contexts, while also addressing the potential barriers to the widespread adoption of exoskeletons in such contexts.
Collapse
Affiliation(s)
- Aleksandra Michałko
- Faculty of Arts and Philosophy, IPEM Institute of Psychoacoustics and Electronic Music, Ghent University, Ghent, Belgium
| | - Nicola Di Stefano
- Institute of Cognitive Sciences and Technologies, National Research Council of Italy (CNR), Rome, Italy
| | - Adriaan Campo
- Faculty of Arts and Philosophy, IPEM Institute of Psychoacoustics and Electronic Music, Ghent University, Ghent, Belgium
| | - Marc Leman
- Faculty of Arts and Philosophy, IPEM Institute of Psychoacoustics and Electronic Music, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
de Lafuente V, Jazayeri M, Merchant H, García-Garibay O, Cadena-Valencia J, Malagón AM. Keeping time and rhythm by internal simulation of sensory stimuli and behavioral actions. SCIENCE ADVANCES 2024; 10:eadh8185. [PMID: 38198556 PMCID: PMC10780886 DOI: 10.1126/sciadv.adh8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Effective behavior often requires synchronizing our actions with changes in the environment. Rhythmic changes in the environment are easy to predict, and we can readily time our actions to them. Yet, how the brain encodes and maintains rhythms is not known. Here, we trained primates to internally maintain rhythms of different tempos and performed large-scale recordings of neuronal activity across the sensory-motor hierarchy. Results show that maintaining rhythms engages multiple brain areas, including visual, parietal, premotor, prefrontal, and hippocampal regions. Each recorded area displayed oscillations in firing rates and oscillations in broadband local field potential power that reflected the temporal and spatial characteristics of an internal metronome, which flexibly encoded fast, medium, and slow tempos. The presence of widespread metronome-related activity, in the absence of stimuli and motor activity, suggests that internal simulation of stimuli and actions underlies timekeeping and rhythm maintenance.
Collapse
Affiliation(s)
- Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo Merchant
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Otto García-Garibay
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Jaime Cadena-Valencia
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
- Faculty of Science and Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg 1700, Switzerland
- Cognitive Neuroscience Laboratory, German Primate Center—Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ana M. Malagón
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| |
Collapse
|
20
|
Vanbilsen N, Kotz SA, Rosso M, Leman M, Triccas LT, Feys P, Moumdjian L. Auditory attention measured by EEG in neurological populations: systematic review of literature and meta-analysis. Sci Rep 2023; 13:21064. [PMID: 38030693 PMCID: PMC10687139 DOI: 10.1038/s41598-023-47597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Sensorimotor synchronization strategies have been frequently used for gait rehabilitation in different neurological populations. Despite these positive effects on gait, attentional processes required to dynamically attend to the auditory stimuli needs elaboration. Here, we investigate auditory attention in neurological populations compared to healthy controls quantified by EEG recordings. Literature was systematically searched in databases PubMed and Web of Science. Inclusion criteria were investigation of auditory attention quantified by EEG recordings in neurological populations in cross-sectional studies. In total, 35 studies were included, including participants with Parkinson's disease (PD), stroke, Traumatic Brain Injury (TBI), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS). A meta-analysis was performed on P3 amplitude and latency separately to look at the differences between neurological populations and healthy controls in terms of P3 amplitude and latency. Overall, neurological populations showed impairments in auditory processing in terms of magnitude and delay compared to healthy controls. Consideration of individual auditory processes and thereafter selecting and/or designing the auditory structure during sensorimotor synchronization paradigms in neurological physical rehabilitation is recommended.
Collapse
Affiliation(s)
- Nele Vanbilsen
- Universitair Multiple Sclerosis Centrum (UMSC), Hasselt-Pelt, Hasselt, Belgium.
- Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, University of Hasselt, Agoralaan Gebouw A, 3590, Diepenbeek, Belgium.
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Mattia Rosso
- Faculty of Arts and Philosophy, IPEM Institute of Psychoacoustics and Electronic Music, University of Ghent, Miriam Makebaplein 1, 9000, Gent, Belgium
- Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France
| | - Marc Leman
- Faculty of Arts and Philosophy, IPEM Institute of Psychoacoustics and Electronic Music, University of Ghent, Miriam Makebaplein 1, 9000, Gent, Belgium
| | - Lisa Tedesco Triccas
- Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, University of Hasselt, Agoralaan Gebouw A, 3590, Diepenbeek, Belgium
- Department of Movement and Clinical Neurosciences, Institute of Neurology, University College London, 33 Queen Square, London, UK
| | - Peter Feys
- Universitair Multiple Sclerosis Centrum (UMSC), Hasselt-Pelt, Hasselt, Belgium
- Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, University of Hasselt, Agoralaan Gebouw A, 3590, Diepenbeek, Belgium
| | - Lousin Moumdjian
- Universitair Multiple Sclerosis Centrum (UMSC), Hasselt-Pelt, Hasselt, Belgium
- Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, University of Hasselt, Agoralaan Gebouw A, 3590, Diepenbeek, Belgium
- Faculty of Arts and Philosophy, IPEM Institute of Psychoacoustics and Electronic Music, University of Ghent, Miriam Makebaplein 1, 9000, Gent, Belgium
| |
Collapse
|
21
|
Rosso M, van Kerrebroeck B, Maes PJ, Leman M. Embodied perspective-taking enhances interpersonal synchronization: A body-swap study. iScience 2023; 26:108099. [PMID: 37920667 PMCID: PMC10618832 DOI: 10.1016/j.isci.2023.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Humans exhibit a strong tendency to synchronize movements with each other, with visual perspective potentially influencing interpersonal synchronization. By manipulating the visual scenes of participants engaged in a joint finger-tapping task, we examined the effects of 1st person and 2nd person visual perspectives on their coordination dynamics. We hypothesized that perceiving the partner's movements from their 1st person perspective would enhance spontaneous interpersonal synchronization, potentially mediated by the embodiment of the partner's hand. We observed significant differences in attractor dynamics across visual perspectives. Specifically, participants in 1st person coupling were unable to maintain de-coupled trajectories as effectively as in 2nd person coupling. Our findings suggest that visual perspective influences coordination dynamics in dyadic interactions, engaging error-correction mechanisms in individual brains as they integrate the partner's hand into their body representation. Our results have the potential to inform the development of applications for motor training and rehabilitation.
Collapse
Affiliation(s)
- Mattia Rosso
- IPEM - Institute for Systematic Musicology, Ghent University, 9000 Ghent, Flanders, Belgium
- PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition - ULR 4072, University of Lille, 59650 Lille, Hauts-de-France, France
| | - Bavo van Kerrebroeck
- IPEM - Institute for Systematic Musicology, Ghent University, 9000 Ghent, Flanders, Belgium
- SPL - Sequence Production Lab, McGill University, Montreal, Quebec H3A 1B1, Canada
- IDMIL – Input Devices. And Music Interaction Laboratory, McGill University, Montréal, Québec H3A 1E3, Canada
| | - Pieter-Jan Maes
- IPEM - Institute for Systematic Musicology, Ghent University, 9000 Ghent, Flanders, Belgium
| | - Marc Leman
- IPEM - Institute for Systematic Musicology, Ghent University, 9000 Ghent, Flanders, Belgium
| |
Collapse
|