1
|
Bravo-Martínez J, Ortega-Tinoco S, Garduño J, Hernández-López S. Arduino based intra-cerebral microinjector device for neuroscience research. HARDWAREX 2023; 15:e00446. [PMID: 37457306 PMCID: PMC10344678 DOI: 10.1016/j.ohx.2023.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Stereotaxic surgery is a less invasive form of surgery that uses a three-dimensional coordinate system to place instruments at a specific location in the brain. Through this type of surgery, one can place needles among other tools within the structures of the brain. Therefore, injections can be given in order to deliver substances that cannot cross the blood-brain barrier. The two most important parameters of the microinjection to control are volume and speed. The volume should not be so large that it displaces the brain tissue and tears it. The injection speed must also be slow so that the liquid that comes out of the syringe can diffuse into the tissue without displacing it and damaging it. Thus, the objectives of the present work are: 1) To develop not a 3D printed prototype but an end-user device. 2) The device must be for animal research only. 3) It must have the same precision in volume and speed as commercial devices. 4) It must be adjustable for microsyringes from 0.5 µl to 1 ml. 5) It must be possible to place it directly on the stereotaxic surgery apparatus and to use it separately. 6) The price must be substantially lower than that of the commercial devices.
Collapse
|
2
|
Miloradovic D, Miloradovic D, Ljujic B, Jankovic MG. Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:83-100. [PMID: 35389200 DOI: 10.1007/5584_2022_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.
Collapse
Affiliation(s)
- Dragica Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
3
|
Kulchitsky VA, Zamaro AS, Shanko YG, Rubakhova VM. Mesenchymal Stem Cells and Activation of Reparative Processes in the Brain and Retina. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Benavides FP, Pinto GBA, Heckler MCT, Hurtado DMR, Teixeira LR, Monobe MMDS, Machado GF, de Melo GD, Rodríguez-Sánchez DN, Alvarenga FDCLE, Amorim RM. Intrathecal Transplantation of Autologous and Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Dogs. Cell Transplant 2021; 30:9636897211034464. [PMID: 34427495 PMCID: PMC8388229 DOI: 10.1177/09636897211034464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The route used in the transplantation of mesenchymal stem cells (MSCs) can directly affect the treatment success. The transplantation of MSCs via the intrathecal (IT) route can be an important therapeutic strategy for neurological disorders. The objective of this study was to evaluate the safety and feasibility of the IT transplantation of autologous (Auto-MSCs) and allogeneic (Allo-MSCs) bone marrow mesenchymal stem cells (BM-MSCs) in healthy dogs. Based on neurodisability score, cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI), no significant differences from the control group were observed on day 1 or day 5 after IT Auto- or Allo-MSCs transplantation (P > 0.05). In addition, analysis of matrix metalloproteinase (MMP)-2 and MMP-9 expression in the CSF revealed no significant differences (P > 0.05) at 5 days after IT transplantation in the Auto- or Allo-MSCs group when compared to the control. Intrathecal transplantation of BM-MSCs in dogs provides a safe, easy and minimally invasive route for the use of cell-based therapeutics in central nervous system diseases.
Collapse
Affiliation(s)
- Felipe Pérez Benavides
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Marta Cristina Thomas Heckler
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Diana Milena Rodríguez Hurtado
- Department of Animal Reproduction and Veterinary Radiology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Livia Ramos Teixeira
- Department of Veterinary Surgery and Anesthesiology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Mitie de Souza Monobe
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Gisele Fabrino Machado
- Department of Clinics, Surgery and Animal Reproduction, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Guilherme Dias de Melo
- Department of Clinics, Surgery and Animal Reproduction, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Diego Noé Rodríguez-Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | | | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| |
Collapse
|
5
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. Combining Growth Factor and Stem Cell Therapy for Stroke Rehabilitation, A Review. Curr Drug Targets 2021; 21:781-791. [PMID: 31914912 DOI: 10.2174/1389450121666200107100747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stroke is a serious, life-threatening condition demanding vigorous search for new therapies. Recent research has focused on stem cell-based therapies as a viable choice following ischemic stroke, based on studies displaying that stem cells transplanted to the brain not only survive but also cause functional recovery. Growth factors defined as polypeptides that regulate the growth and differentiation of many cell types. Many studies have demonstrated that combined use of growth factors may increase results by the stimulation of endogenous neurogenesis, anti-inflammatory, neuroprotection properties, and enhancement of stem cell survival rates and so may be more effective than a single stem cell therapy. This paper reviews and discusses the most promising new stroke recovery research, including combination treatment.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, Moll G, Cox CS. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Front Immunol 2019; 10:1645. [PMID: 31417542 PMCID: PMC6685059 DOI: 10.3389/fimmu.2019.01645] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
For several decades, multipotent mesenchymal stromal cells (MSCs) have been extensively studied for their therapeutic potential across a wide range of diseases. In the preclinical setting, MSCs demonstrate consistent ability to promote tissue healing, down-regulate excessive inflammation and improve outcomes in animal models. Several proposed mechanisms of action have been posited and demonstrated across an array of in vitro models. However, translation into clinical practice has proven considerably more difficult. A number of prominent well-funded late-phase clinical trials have failed, thus calling out for new efforts to optimize product delivery in the clinical setting. In this review, we discuss novel topics critical to the successful translation of MSCs from pre-clinical to clinical applications. In particular, we focus on the major routes of cell delivery, aspects related to hemocompatibility, and potential safety concerns associated with MSC therapy in the different settings.
Collapse
Affiliation(s)
- Henry Caplan
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akshita Kumar
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mitchell George
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela Wenzel
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Supinder Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Naama E. Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|