1
|
Dib A, Polo G, Danaila T, Laurencin C, Prange S, Thobois S. Falsely reassuring impedance in a patient with deep brain stimulation: a case report. J Neurol 2024; 271:5647-5649. [PMID: 38831109 DOI: 10.1007/s00415-024-12482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Affiliation(s)
- A Dib
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
| | - G Polo
- Department of Neurosurgery, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron, France
| | - T Danaila
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
| | - C Laurencin
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
- Lyon Neuroscience Research Center, UMR5292, INSERM U1028, CNRS, Lyon, France
| | - S Prange
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
- Lyon Neuroscience Research Center, UMR5292, INSERM U1028, CNRS, Lyon, France
- Faculté de Médecine Et Maïeutique, Université de Lyon, Université Claude-Bernard Lyon I, Lyon Sud Charles-Mérieux, Lyon, France
| | - S Thobois
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France.
- Lyon Neuroscience Research Center, UMR5292, INSERM U1028, CNRS, Lyon, France.
- Faculté de Médecine Et Maïeutique, Université de Lyon, Université Claude-Bernard Lyon I, Lyon Sud Charles-Mérieux, Lyon, France.
| |
Collapse
|
2
|
Béreau M, Kibleur A, Servant M, Clément G, Dujardin K, Rolland AS, Wirth T, Lagha-Boukbiza O, Voirin J, Santin MDN, Hainque E, Grabli D, Comte A, Drapier S, Durif F, Marques A, Eusebio A, Azulay JP, Giordana C, Houeto JL, Jarraya B, Maltete D, Rascol O, Rouaud T, Tir M, Moreau C, Danaila T, Prange S, Tatu L, Tranchant C, Corvol JC, Devos D, Thobois S, Desmarets M, Anheim M. Motivational and cognitive predictors of apathy after subthalamic nucleus stimulation in Parkinson's disease. Brain 2024; 147:472-485. [PMID: 37787488 DOI: 10.1093/brain/awad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Astrid Kibleur
- LIP/PC2S, Université Grenoble Alpes, Université Savoie Mont Blanc, 38040 Grenoble Cedex 9, France
| | - Mathieu Servant
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Gautier Clément
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Kathy Dujardin
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Anne-Sophie Rolland
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Thomas Wirth
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Marie des Neiges Santin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Elodie Hainque
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Grabli
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - Alexandre Comte
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
| | - Sophie Drapier
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Rennes, 35000 Rennes, France
| | - Franck Durif
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Ana Marques
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Caroline Giordana
- Department of Neurology, NS-Park/F-CRIN network, Centre Hospitalier Universitaire de Nice, 06002 Nice, France
| | - Jean-Luc Houeto
- Department of Neurology, NS-Park/F-CRIN network, Limoges University Hospital, Inserm, U1094, EpiMaCT-Epidemiology of chronic diseases in tropical zone, Limoges University Hospital,87042 Limoges, France
| | - Béchir Jarraya
- Neuroscience Pole, NS-Park/F-CRIN network, Hôpital Foch, Suresnes, University of Versailles Paris-Saclay, INSERM-CEA NeuroSpin, 91191 Gif-sur-Yvette, France
| | - David Maltete
- Department of Neurology, NS-Park/F-CRIN network, Rouen University Hospital and University of Rouen, 76000 Rouen, France
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, 76130 Mont-Saint-Aignan, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neuroscience, CIC1436, NS-Park/F-CRIN network, NeuroToul Center of Excellence, Toulouse University Hospital, INSERM, CHU of Toulouse, 31000 Toulouse, France
| | - Tiphaine Rouaud
- Department of Neurology, Centre Expert Parkinson, NS-Park/F-CRIN network, CHU Nantes, 44093 Nantes, France
| | - Mélissa Tir
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Caroline Moreau
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Teodor Danaila
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Stéphane Prange
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
| | - Laurent Tatu
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Christine Tranchant
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jean-Christophe Corvol
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Devos
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Stephane Thobois
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerot, CNRS, UMR5229, 69675 Bron, France
| | - Maxime Desmarets
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Mathieu Anheim
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
5
|
Abdollahifard S, Farrokhi A, Mosalamiaghili S, Assadian K, Yousefi O, Razmkon A. Constant current or constant voltage deep brain stimulation: short answers to a long story. Acta Neurol Belg 2023; 123:1-8. [PMID: 36309957 DOI: 10.1007/s13760-022-02118-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Recently, the feature of generating constant current output has been added to the implantable pulse generators (IPGs). The efficacy of the conventionally used constant voltage (CV) stimulation has been proved in different movement and psychiatric disorders. In this systematic review, we aimed to discuss the effect of constant current (CC) and constant voltage stimulation on patients with Parkinson's disease (PD) who had subthalamic nucleus deep brain stimulation implantation; we also compared these methods of stimulation with each other. METHODS Using the words "Deep brain stimulation", "constant current" and "constant voltage", we developed a broad search strategy and a systematic search was conducted in PubMed, Scopus, Web of Science and Cochrane electronic bibliographic databases. Studies on the Parkinson's disease patients with subthalamic deep brain stimulation, which mentioned constant current or/and constant voltage setting stimulation were included. RESULTS After screening of 284 articles, 10 reports were found eligible for this study. The score of unified Parkinson's disease rating scale part 3 was improved compared to the baseline, whether the stimulation was CV at baseline or CC. No significant change in non-motor outcomes was found. CONCLUSIONS Although CC stimulation has shown a significant improvement in both motor and non-motor symptoms of PD, switching from CV to CC did not result in a significant change in the score of these items based on UPDRS. To sum up, implantation of constant current devices is safe and significantly improves motor function; it also maintains an acceptable safety profile in patients with PD.
Collapse
Affiliation(s)
- Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirmohammad Farrokhi
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedarad Mosalamiaghili
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kasra Assadian
- Research Center for Neuromodulation and Pain, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Yousefi
- Research Center for Neuromodulation and Pain, Shiraz, Iran
| | - Ali Razmkon
- Research Center for Neuromodulation and Pain, Shiraz, Iran.
- Pierre Deniker Clinical Research Unit, Henri Laborit Hospital Centre, Poitiers, France.
| |
Collapse
|
6
|
Wirth T, Dayal V, de Roquemaurel A, Ferreira F, Vijiaratnam N, Akram H, Zrinzo L, Foltynie T, Limousin P. Endurance of Short Pulse Width Thalamic Stimulation Efficacy in Intention Tremor. Stereotact Funct Neurosurg 2020; 99:281-286. [PMID: 33227807 DOI: 10.1159/000511716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022]
Abstract
The benefit of short pulse width stimulation in patients suffering from essential tremor (ET) refractory to thalamic deep brain stimulation remains controversial. Here, we add to the minimal body of evidence available by reporting the effect of this type of stimulation in 3 patients with a persistent and severe intention tremor component despite iterative DBS setting adjustments. While a reduction in pulse width to 30 μs initially showed promise in these patients by improving tremor control and mitigating cerebellar side effects arguably by widening the therapeutic window, these benefits seemed to dissipate during early follow-up. Our experience supports the need for measuring longer-term outcomes when reporting the usefulness of this mode of stimulation in ET.
Collapse
Affiliation(s)
- Thomas Wirth
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom, .,Neurology Department, Strasbourg University Hospital, Strasbourg, France, .,INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, Strasbourg, France,
| | - Viswas Dayal
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Alexis de Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Francisca Ferreira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|