1
|
Pang B, An S, Liu Y, Jiang T, Jia W, Chai R, Wang Y. Understanding spinal cord astrocytoma: Molecular mechanism, therapy, and comprehensive management. Cancer Lett 2024; 601:217154. [PMID: 39121902 DOI: 10.1016/j.canlet.2024.217154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord astrocytoma is a rare and highly debilitating tumor, yet our knowledge of its clinical characteristics, molecular features, and pathogenesis remains limited compared to that of its counterparts in the brain. Current diagnostic and therapeutic approaches for spinal cord astrocytomas are primarily based on established guidelines for brain astrocytomas. However, recent studies have revealed unique clinical and pathological attributes that distinguish spinal cord astrocytomas from their corresponding brain counterparts. These findings underscore the inadequacy of directly applying the clinical guidelines developed for brain astrocytomas to spinal astrocytomas. In this review, we provided an up-to-date overview of the advancements in understanding spinal cord astrocytomas. We also discussed the challenges and future research prospects in this field with the aim of improving the precision of diagnosis and therapy for these tumors. Specifically, we emphasized the importance of enhancing our understanding of the molecular heterogeneity, immune characteristics, and clinical trials of spinal cord astrocytomas.
Collapse
Affiliation(s)
- Bo Pang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Songyuan An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Ruichao Chai
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Yongzhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
2
|
Esparragosa Vazquez I, Ducray F. The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors. Cancers (Basel) 2024; 16:2781. [PMID: 39199553 PMCID: PMC11353198 DOI: 10.3390/cancers16162781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Intramedullary primary spinal cord tumors are rare in adults and their classification has recently evolved. Their treatment most frequently relies on maximal safe surgical resection. Herein, we review, in light of the WHO 2021 classification of central nervous system tumors, the knowledge regarding the role of radiotherapy and systemic treatments in spinal ependymomas, spinal astrocytomas (pilocytic astrocytoma, diffuse astrocytoma, spinal glioblastoma IDH wildtype, diffuse midline glioma H3-K27M altered, and high-grade astrocytoma with piloid features), neuro-glial tumors (ganglioglioma and diffuse leptomeningeal glioneuronal tumor), and hemangioblastomas. In spinal ependymomas, radiotherapy is recommended for incompletely resected grade 2 tumors, grade 3 tumors, and recurrent tumors not amenable to re-surgery. Chemotherapy is used in recurrent cases. In spinal astrocytomas, radiotherapy is recommended for incompletely resected grade 2 astrocytomas and grade 3 or 4 tumors as well as recurrent tumors. Chemotherapy is indicated for newly diagnosed high-grade astrocytomas and recurrent cases. In hemangioblastomas not amenable to surgery, radiotherapy is an effective alternative option. Targeted therapies are playing an increasingly important role in the management of some intramedullary primary spinal cord tumor subtypes. BRAF and/or MEK inhibitors have demonstrated efficacy in pilocytic astrocytomas and glioneuronal tumors, belzutifan in von Hippel-Lindau-related hemangioblastomas, and promising results have been reported with ONC201 in diffuse midline glioma H3-K27M altered.
Collapse
Affiliation(s)
| | - François Ducray
- Neuro-Oncology Department, Hospices Civils of Lyon, 69500 Bron, France;
| |
Collapse
|
3
|
Karabacak M, Schupper AJ, Carr MT, Bhimani AD, Steinberger J, Margetis K. Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients. Spine J 2024; 24:1065-1076. [PMID: 38365005 DOI: 10.1016/j.spinee.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND CONTEXT Numerous factors have been associated with the survival outcomes in patients with spinal cord gliomas (SCG). Recognizing these specific determinants is crucial, yet it is also vital to establish a reliable and precise prognostic model for estimating individual survival outcomes. OBJECTIVE The objectives of this study are twofold: first, to create an array of interpretable machine learning (ML) models developed for predicting survival outcomes among SCG patients; and second, to integrate these models into an easily navigable online calculator to showcase their prospective clinical applicability. STUDY DESIGN This was a retrospective, population-based cohort study aiming to predict the outcomes of interest, which were binary categorical variables, in SCG patients with ML models. PATIENT SAMPLE The National Cancer Database (NCDB) was utilized to identify adults aged 18 years or older who were diagnosed with histologically confirmed SCGs between 2010 and 2019. OUTCOME MEASURES The outcomes of interest were survival outcomes at three specific time points postdiagnosis: 1, 3, and 5 years. These outcomes were formed by combining the "Vital Status" and "Last Contact or Death (Months from Diagnosis)" variables. Model performance was evaluated visually and numerically. The visual evaluation utilized receiver operating characteristic (ROC) curves, precision-recall curves (PRCs), and calibration curves. The numerical evaluation involved metrics such as sensitivity, specificity, accuracy, area under the PRC (AUPRC), area under the ROC curve (AUROC), and Brier Score. METHODS We employed five ML algorithms-TabPFN, CatBoost, XGBoost, LightGBM, and Random Forest-along with the Optuna library for hyperparameter optimization. The models that yielded the highest AUROC values were chosen for integration into the online calculator. To enhance the explicability of our models, we utilized SHapley Additive exPlanations (SHAP) for assessing the relative significance of predictor variables and incorporated partial dependence plots (PDPs) to delineate the influence of singular variables on the predictions made by the top performing models. RESULTS For the 1-year survival analysis, 4,913 patients [5.6% with 1-year mortality]; for the 3-year survival analysis, 4,027 patients (11.5% with 3-year mortality]; and for the 5-year survival analysis, 2,854 patients (20.4% with 5-year mortality) were included. The top models achieved AUROCs of 0.938 for 1-year mortality (TabPFN), 0.907 for 3-year mortality (LightGBM), and 0.902 for 5-year mortality (Random Forest). Global SHAP analyses across survival outcomes at different time points identified histology, tumor grade, age, surgery, radiotherapy, and tumor size as the most significant predictor variables for the top-performing models. CONCLUSIONS This study demonstrates ML techniques can develop highly accurate prognostic models for SCG patients with excellent discriminatory ability. The interactive online calculator provides a tool for assessment by physicians (https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NCDB-SCG). Local interpretability informs prediction influences for a given individual. External validation across diverse datasets could further substantiate potential utility and generalizability. This robust, interpretable methodology aligns with the goals of precision medicine, establishing a foundation for continued research leveraging ML's predictive power to enhance patient counseling.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Ave, New York, NY, USA
| | - Alexander J Schupper
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Ave, New York, NY, USA
| | - Matthew T Carr
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Ave, New York, NY, USA
| | - Abhiraj D Bhimani
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Ave, New York, NY, USA
| | - Jeremy Steinberger
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Ave, New York, NY, USA
| | - Konstantinos Margetis
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Ave, New York, NY, USA.
| |
Collapse
|
4
|
Hang G, Gong Y, Xie H, Xie T. A novel lateral myelotomy approach for the treatment of lateral or ventrolateral spinal gliomas. Acta Neurochir (Wien) 2024; 166:237. [PMID: 38809310 DOI: 10.1007/s00701-024-06139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE To describe a novel surgical approach in which myelotomy was performed lateral to the dorsal root entry zone (LDREZ), for the treatment of lateral or ventrolateral spinal intramedullary glioma. METHODS This study reviewed six patients with lateral or ventrolateral spinal intramedullary glioma who received surgical treatments by using myelotomy technique of LDREZ approach. The patient's clinical characteristics, magnetic resonance imaging (MRI) results, and follow-up outcomes were analyzed. The neurological function of patients before and after operation was assessed based on the Frankel scale system. The anatomical feasibility, surgical techniques, advantages and disadvantages of LDREZ approach were analyzed. RESULTS Myelotomy technique of LDREZ approach was employed in all 6 patients. Gross total resections were achieved in 4 patients, and 2 patients with astrocytoma (case 2, 6) underwent partial removal. The perioperative recovery was all smooth and all the patients were discharged on schedule. All the patients who suffered from neuropathic pain were relieved. After surgery, neurological function remained unchanged in 3 patients. 2 patients improved from Frankel grade B to C, and 1 patient deteriorated from Frankel grade D to C immediately after surgery and returned to Frankel grade D at 3 months follow-up. Regarding to the poor prognosis of high-grade glioma, the two cases with WHO IV glioma didn't achieve long survival. CONCLUSION LDREZ approach is feasible and safe for the surgical removal of lateral or ventrolateral spinal gliomas. This approach can provide a direct pathway to lateral or ventrolateral spinal gliomas with minimal damage to normal spinal cord.
Collapse
Affiliation(s)
- Gai Hang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yukang Gong
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hang Xie
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Tianhao Xie
- Department of Neurosurgery, Central Theater General Hospital of Chinese PLA, Wuhan, China.
| |
Collapse
|
5
|
Chai R, An S, Lin H, Pang B, Yan H, Liu Y, Wu Y, Wang L, Liu X, Chen H, Yang X, Chang Q, Jia W, Wang Y. Sequencing of cerebrospinal fluid cell-free DNA facilitated early differential diagnosis of intramedullary spinal cord tumors. NPJ Precis Oncol 2024; 8:43. [PMID: 38388726 PMCID: PMC10884012 DOI: 10.1038/s41698-024-00541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Pre-surgery differential diagnosis is valuable for personalized treatment planning in intramedullary spinal cord tumors. This study assessed the performance of sequencing cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) for differential diagnosis of these tumors. Prospectively enrolling 45 patients with intramedullary spinal cord lesions, including diffuse midline glioma (DMG), H3K27-altered (14/45), glioblastoma (1/45), H3-wildtype-astrocytoma (10/45), ependymoma (11/45), and other lesions (9/45), CSF samples were collected via lumbar puncture (41/45), intraoperative extraction (3/45), and Ommaya reservoir (1/45). Then, these samples underwent targeted sequencing along with paired tissue DNA. DMG, H3K27-altered patients exhibited a higher ctDNA positivity (85.7%, 12/14) compared to patients with H3-wildtype-astrocytoma (0/8, P = 0.0003), ependymoma (2/10, P = 0.003), and glioneuronal tumor (0/3, P = 0.009). The histological-grade-IV (P = 0.0027), Ki-67 index ≥10% (P = 0.014), and tumor reaching spinal cord surface (P = 0.012) are also associated with higher ctDNA positivity. Interestingly, for patients with TERT promoter mutant tumors, TERT mutation was detectable in the CSF cfDNA of one DMG case, but not other five cases with histological-grade-II tumors. Shared copy number variants were exclusively observed in DMG, H3K27-altered, and showed a strong correlation (Correlation = 0.95) between CSF and tissue. Finally, H3K27M mutations in CSF exhibited high diagnostic efficiency for DMG, H3K27-altered (Sensitivity = 85.7%, Specificity = 100.0%, AUC = 0.929). Notably, H3K27M was detectable in CSF from patients with recurrent tumors, making it easily applicable for postoperative monitoring. In conclusion, the molecular profile from ctDNA released into CSF of malignant tumors was more frequently detected compared to relatively benign ones. Sequencing of ctDNA in CSF exhibited high efficiency for the differential diagnosis of DMG, H3K27-altered.
Collapse
Affiliation(s)
- Ruichao Chai
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Songyuan An
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Han Lin
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Bo Pang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Yan
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Yun Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Yilin Wu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Long Wang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huiyuan Chen
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyu Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Jiangsu Simcere Diagnostics Co.,Ltd., Nanjing, China
| | - Qing Chang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Yongzhi Wang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Perez Giraldo GS, Singer L, Cao T, Jamshidi P, Dixit K, Kontzialis M, Castellani R, Pytel P, Anadani N, Bevan CJ, Grebenciucova E, Balabanov R, Cohen BA, Graham EL. Differential Diagnosis of Tumor-like Brain Lesions. Neurol Clin Pract 2023; 13:e200182. [PMID: 37664132 PMCID: PMC10468256 DOI: 10.1212/cpj.0000000000200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 09/05/2023]
Abstract
Purpose of Review Tumor-like brain lesions are rare and commonly suggest a neoplastic etiology. Failure to rapidly identify non-neoplastic causes can lead to increased morbidity and mortality. In this review, we describe 10 patients who presented with atypical, non-neoplastic tumor-like brain lesions in which brain biopsy was essential for a correct diagnosis and treatment. Recent Findings There has been increasing recognition of autoimmune conditions affecting the nervous system, and many of those diseases can cause tumor-like brain lesions. Currently available reports of non-neoplastic tumor-like brain lesions are scarce. Most case series focus on tumefactive demyelinating lesions, and a comprehensive review including other neuroimmunological conditions such as CNS vasculitis, neurosarcoidosis, histiocytic and infectious etiologies is lacking. Summary We review the literature on tumor-like brain lesions intending to increase the awareness and differential diagnosis of non-neoplastic brain tumor mimics. We advocate for earlier brain biopsies, which, in our case series, significantly changed diagnosis, management, and outcomes.
Collapse
Affiliation(s)
- Gina S Perez Giraldo
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Lauren Singer
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Toni Cao
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Pouya Jamshidi
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Karan Dixit
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Marinos Kontzialis
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Rudolph Castellani
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Peter Pytel
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Nidhiben Anadani
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Carolyn J Bevan
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Elena Grebenciucova
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Roumen Balabanov
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Bruce A Cohen
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| | - Edith L Graham
- Departments of Neurology (GSPG, LS, TC, KD, CJB, EG, RB, BAC, ELG), Pathology (PJ, RC), and Radiology (MK), Northwestern University; Department of Pathology (PP), University of Chicago, IL; and Department of Neurology (NA), University of Oklahoma Health Sciences Center, OK
| |
Collapse
|
7
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Therapeutic Approaches in Adult Primary Spinal Cord Astrocytoma: A Systematic Review. Cancers (Basel) 2022; 14:cancers14051292. [PMID: 35267601 PMCID: PMC8909513 DOI: 10.3390/cancers14051292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Adult primary spinal cord astrocytoma (SCA) is a very rare disease, with no standardized consensus about its therapy. We focus on treatment efficacy based on systematic review: only 18 papers were eligible for the analysis, including 285 patients. No clinical trials results were available. Not enough data were extracted to determine a univocal treatment plan for SCA. Given the rarity of these diseases, a collaboration among institutions is mandatory to establish a standard for study conduction (homogenous inclusion criteria and method of analysis), to perform homogenous studies and define future evidence-based recommendation. Contextually, multicentric clinical trials with molecular investigations are strongly advised to better manage SCA and unveil their biology. Abstract The issue: Gliomas are primary tumors arising from supporting cells of the central nervous system (CNS), usually in the brain. The 2021 World Health Organization (WHO) classifies gliomas as adult-type diffuse gliomas or circumscribed astrocytic gliomas depending on their histology and molecular features. Spinal astrocytic gliomas are very rare, and nowadays no standard of therapy is available. Treatment options are limited: surgery is often not radical, and adjuvant therapies include mostly radiotherapy (RT) or systemic chemotherapy (CHT). There is lack of knowledge about the efficacy and safety of therapies and their multidisciplinary approaches. The aim of the review: A systematic review of the literature from January 2000 to June 2021 was performed, including both clinical trials and observational studies on histological adult primary spinal cord astrocytomas (SCA), with a minimum follow-up of 6 months and reporting the overall survival, progression-free survival or clinical neurological outcome after any therapeutic approach (surgery, RT or CHT). What are the main findings? A total of 1197 citations were identified by the Medline search and additional records; based on our inclusion criteria, 18 studies were included with a total of 285 adult patients. We documented the lack of any clinical trial. What are the conclusions? The available literature data are limited to series/retrospective studies, including heterogeneous patients, i.e., astrocytoma as well as ependymoma or pediatric/adult age, with scanty data on the outcomes of interest. No clinical trials have been run. Due to the rarity of this disease, multicentric clinical trials with molecular investigations are mandatory to better manage such a rare disease.
Collapse
|