1
|
Di Luzio P, Brady L, Turrini S, Romei V, Avenanti A, Sel A. Investigating the effects of cortico-cortical paired associative stimulation in the human brain: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 167:105933. [PMID: 39481669 DOI: 10.1016/j.neubiorev.2024.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Recent decades have witnessed a rapid development of novel neuromodulation techniques that allow direct manipulation of cortical pathways in the human brain. These techniques, known as cortico-cortical paired stimulation (ccPAS), apply magnetic stimulation over two cortical regions altering interregional connectivity. This review evaluates ccPAS's effectiveness to induce plastic changes in cortical pathways in the healthy brain. A systematic database search identified 41 studies investigating the effect of ccPAS on neurophysiological or behavioural measures, and a subsequent multilevel meta-analysis focused on the standardized mean differences to assess ccPAS's efficacy. Most studies report significant neurophysiological and behavioural changes from ccPAS interventions across several brain networks, consistently showing medium effect sizes. Moderator analyses revealed limited influence of experimental manipulations on effect sizes. The multivariate approach and lack of small-study bias suggest reliable effect estimates. ccPAS is a promising tool to manipulate neuroplasticity in cortical pathways, showing reliable effects on brain cortical networks. Important areas for further research on the influence of experimental procedures and the potential of ccPAS for clinical interventions are highlighted.
Collapse
Affiliation(s)
- Paolo Di Luzio
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Laura Brady
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Sonia Turrini
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid 28015, Spain
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 3460000, Chile
| | - Alejandra Sel
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
2
|
Raij T, Lin FH, Letham B, Lankinen K, Nayak T, Witzel T, Hämäläinen M, Ahveninen J. Onset timing of letter processing in auditory and visual sensory cortices. Front Integr Neurosci 2024; 18:1427149. [PMID: 39610979 PMCID: PMC11602476 DOI: 10.3389/fnint.2024.1427149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Here, we report onset latencies for multisensory processing of letters in the primary auditory and visual sensory cortices. Healthy adults were presented with 300-ms visual and/or auditory letters (uppercase Roman alphabet and the corresponding auditory letter names in English). Magnetoencephalography (MEG) evoked response generators were extracted from the auditory and visual sensory cortices for both within-modality and cross-sensory activations; these locations were mainly consistent with functional magnetic resonance imaging (fMRI) results in the same subjects. In the primary auditory cortices (Heschl's gyri) activity to auditory stimuli commenced at 25 ms and to visual stimuli at 65 ms (median values). In the primary visual cortex (Calcarine fissure) the activations started at 48 ms to visual and at 62 ms to auditory stimuli. This timing pattern suggests that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 17-37 ms. Audiovisual interactions for letters started at 125 ms in the auditory and at 133 ms in the visual cortex (60-71 ms after inputs from both modalities converged). Multivariate pattern analysis suggested similar latency differences between the sensory cortices. Combined with our earlier findings for simpler stimuli (noise bursts and checkerboards), these results suggest that primary sensory cortices participate in early cross-modal and interaction processes similarly for different stimulus materials, but previously learned audiovisual associations and stimulus complexity may delay the start of the audiovisual interaction stage.
Collapse
Affiliation(s)
- Tommi Raij
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Benjamin Letham
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Kaisu Lankinen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Tapsya Nayak
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Thomas Witzel
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Matti Hämäläinen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jyrki Ahveninen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| |
Collapse
|
3
|
Goldenkoff ER, Deluisi JA, Lee TG, Hampstead BM, Taylor SF, Polk TA, Vesia M. Repeated spaced cortical paired associative stimulation promotes additive plasticity in the human parietal-motor circuit. Clin Neurophysiol 2024; 166:202-210. [PMID: 39182339 DOI: 10.1016/j.clinph.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Repeated spaced sessions of repetitive transcranial magnetic stimulation (TMS) to the human primary motor cortex can lead to dose-dependent increases in motor cortical excitability. However, this has yet to be demonstrated in a defined cortical circuit. We aimed to examine the effects of repeated spaced cortical paired associative stimulation (cPAS) on excitability in the motor cortex. METHODS cPAS was delivered to the primary motor cortex (M1) and posterior parietal cortex (PPC) with two coils. In the multi-dose condition, three sessions of cPAS were delivered 50-min apart. The single-dose condition had one session of cPAS, followed by two sessions of a control cPAS protocol. Motor-evoked potentials were evaluated before and up to 40 min after each cPAS session as a measure of cortical excitability. RESULTS Compared to a single dose of cPAS, motor cortical excitability significantly increased after multi-dose cPAS. Increasing the number of cPAS sessions resulted in a cumulative, dose-dependent effect on excitability in the motor cortex, with each successive cPAS session leading to notable increases in potentiation. CONCLUSION Repeated spaced cPAS sessions summate to increase motor cortical excitability induced by single cPAS. SIGNIFICANCE Repeated spaced cPAS could potentially restore abilities lost due to disorders like stroke.
Collapse
Affiliation(s)
| | | | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
4
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|
5
|
Sinisalo H, Rissanen I, Kahilakoski OP, Souza VH, Tommila T, Laine M, Nyrhinen M, Ukharova E, Granö I, Soto AM, Matsuda RH, Rantala R, Guidotti R, Kičić D, Lioumis P, Mutanen T, Pizzella V, Marzetti L, Roine T, Stenroos M, Ziemann U, Romani GL, Ilmoniemi RJ. Modulating brain networks in space and time: Multi-locus transcranial magnetic stimulation. Clin Neurophysiol 2024; 158:218-224. [PMID: 38184469 DOI: 10.1016/j.clinph.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Affiliation(s)
- Heikki Sinisalo
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| | - Ilkka Rissanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | | | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University, and Helsinki University Hospital, Helsinki, Finland; Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Timo Tommila
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Mikael Laine
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Mikko Nyrhinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; AMI Centre, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Elena Ukharova
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ida Granö
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ana M Soto
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Renan H Matsuda
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Robin Rantala
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Dubravko Kičić
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University, and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
6
|
Hernandez-Pavon JC, San Agustín A, Wang MC, Veniero D, Pons JL. Can we manipulate brain connectivity? A systematic review of cortico-cortical paired associative stimulation effects. Clin Neurophysiol 2023; 154:169-193. [PMID: 37634335 DOI: 10.1016/j.clinph.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Cortico-cortical paired associative stimulation (ccPAS) is a form of dual-site transcranial magnetic stimulation (TMS) entailing a series of single-TMS pulses paired at specific interstimulus intervals (ISI) delivered to distant cortical areas. The goal of this article is to systematically review its efficacy in inducing plasticity in humans focusing on stimulation parameters and hypotheses of underlying neurophysiology. METHODS A systematic review of the literature from 2009-2023 was undertaken to identify all articles utilizing ccPAS to study brain plasticity and connectivity. Six electronic databases were searched and included. RESULTS 32 studies were identified. The studies targeted connections within the same hemisphere or between hemispheres. 28 ccPAS studies were in healthy participants, 1 study in schizophrenia, and 1 in Alzheimer's disease (AD) patients. 2 additional studies used cortico-cortical repetitive paired associative stimulation (cc-rPAS) in generalized anxiety disorder (GAD) patients. Outcome measures include electromyography (EMG), behavioral measures, electroencephalography (EEG), and functional magnetic resonance imaging (fMRI). ccPAS seems to be able to modulate brain connectivity depending on the ISI. CONCLUSIONS ccPAS can be used to modulate corticospinal excitability, brain activity, and behavior. Although the stimulation parameters used across studies reviewed in this paper are varied, ccPAS is a promising approach for basic research and potential clinical applications. SIGNIFICANCE Recent advances in neuroscience have caused a shift of interest from the study of single areas to a more complex approach focusing on networks of areas that orchestrate brain activity. Consequently, the TMS community is also witnessing a change, with a growing interest in targeting multiple brain areas rather than a single locus, as evidenced by an increasing number of papers using ccPAS. In light of this new enthusiasm for brain connectivity, this review summarizes existing literature and stimulation parameters that have proven effective in changing electrophysiological, behavioral, or neuroimaging-derived measures.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| | - Arantzazu San Agustín
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid, Spain; PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Max C Wang
- Department of Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Jose L Pons
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| |
Collapse
|