1
|
Zhang Y, Gao Y, Zhou J, Zhang Z, Feng M, Liu Y. Advances in brain-computer interface controlled functional electrical stimulation for upper limb recovery after stroke. Brain Res Bull 2025; 226:111354. [PMID: 40280369 DOI: 10.1016/j.brainresbull.2025.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Stroke often results in varying degrees of functional impairment, significantly affecting patients' quality of daily life. In recent years, brain-computer interface-controlled functional electrical stimulation has offered new therapeutic approaches for post-stroke rehabilitation. This paper reviews the application of BCI-FES in the recovery of upper limb function after stroke and explores its underlying mechanisms. By analyzing relevant studies, the aim is to provide a theoretical basis for rehabilitating upper limb function post-stroke, promote BCI-FES, and offer guidance for future clinical practice.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Yuling Gao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Jiaqi Zhou
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Zhenni Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Min Feng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Dalian Medical University, China.
| | - Yong Liu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China.
| |
Collapse
|
2
|
Haston S, Gill S, Twentyman K, Green E, Agbeleye O, Eastaugh C, Craig D, Garcia Gonzalez-Moral S, Mkwashi A. A Horizon Scan of Neurotechnology Innovations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:811. [PMID: 40427924 PMCID: PMC12110900 DOI: 10.3390/ijerph22050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/07/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Neurotechnology is a rapidly emerging field with vast potential within healthcare, but also has inherent concerns. There is, therefore, a need to ensure the responsible and ethical development and regulation of these technologies. This horizon scan aimed to provide an overview of neurotechnologies in development and those approved by the FDA as of June 2024 for a range of conditions relating to mental health, healthy ageing, and physical disability. Searches of clinical trials, conferences, journals, and news were performed in March 2024. Relevant technologies were identified through a process of screening, data extraction and synthesis. A total of 81 unique neurotechnologies were identified, with 23 relating to mental health, 31 to healthy ageing, and 42 to physical disability. A total of 79% percent did not yet have FDA approval and 77.4% were at earlier stages of development (pilot/feasibility studies), with 22.6% at pivotal or post-market stages. Digital elements were common features of the technologies, including software, apps, and connectivity to other devices; however, there were only three technologies with an identifiable AI component. A complex regulatory landscape and unique ethical and safety concerns associated with neurotechnology could pose challenges to innovators, though the emerging nature of the field also provides an opportunity to pre-emptively address potential issues.
Collapse
Affiliation(s)
- Shona Haston
- National Institute for Health and Care Research (NIHR) Innovation Observatory, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Liu XY, Wang WL, Liu M, Chen MY, Pereira T, Doda DY, Ke YF, Wang SY, Wen D, Tong XG, Li WG, Yang Y, Han XD, Sun YL, Song X, Hao CY, Zhang ZH, Liu XY, Li CY, Peng R, Song XX, Yasi A, Pang MJ, Zhang K, He RN, Wu L, Chen SG, Chen WJ, Chao YG, Hu CG, Zhang H, Zhou M, Wang K, Liu PF, Chen C, Geng XY, Qin Y, Gao DR, Song EM, Cheng LL, Chen X, Ming D. Recent applications of EEG-based brain-computer-interface in the medical field. Mil Med Res 2025; 12:14. [PMID: 40128831 PMCID: PMC11931852 DOI: 10.1186/s40779-025-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Brain-computer interfaces (BCIs) represent an emerging technology that facilitates direct communication between the brain and external devices. In recent years, numerous review articles have explored various aspects of BCIs, including their fundamental principles, technical advancements, and applications in specific domains. However, these reviews often focus on signal processing, hardware development, or limited applications such as motor rehabilitation or communication. This paper aims to offer a comprehensive review of recent electroencephalogram (EEG)-based BCI applications in the medical field across 8 critical areas, encompassing rehabilitation, daily communication, epilepsy, cerebral resuscitation, sleep, neurodegenerative diseases, anesthesiology, and emotion recognition. Moreover, the current challenges and future trends of BCIs were also discussed, including personal privacy and ethical concerns, network security vulnerabilities, safety issues, and biocompatibility.
Collapse
Affiliation(s)
- Xiu-Yun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Wen-Long Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Miao Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Ming-Yi Chen
- Department of Micro/Nano Electronics, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Tânia Pereira
- Institute for Systems and Computer Engineering, Technology and Science, 4099-002, Porto, Portugal
| | - Desta Yakob Doda
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Yu-Feng Ke
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Dong Wen
- School of Intelligence Science and Technology, University of Sciences and Technology Beijing, Beijing, 100083, China
| | | | - Wei-Guang Li
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Xiao-Di Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu-Lin Sun
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Cong-Ying Hao
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Zi-Hua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin-Yang Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chun-Yang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Rui Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xiao-Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Abi Yasi
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Mei-Jun Pang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Kuo Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Run-Nan He
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Le Wu
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Geng Chen
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-Jin Chen
- Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yan-Gong Chao
- The First Hospital of Tsinghua University, Beijing, 100016, China
| | - Cheng-Gong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Heng Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Beijing, 110122, China
| | - Min Zhou
- Department of Critical Care Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, 230031, China
| | - Kun Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Peng-Fei Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chen Chen
- School of Computer Science, Fudan University, Shanghai, 200438, China
| | - Xin-Yi Geng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yun Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dong-Rui Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - En-Ming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Long-Long Cheng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
| | - Xun Chen
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Dong Ming
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China.
| |
Collapse
|
4
|
Lim MJR, Lo JYT, Tan YY, Lin HY, Wang Y, Tan D, Wang E, Naing Ma YY, Wei Ng JJ, Jefree RA, Tseng Tsai Y. The state-of-the-art of invasive brain-computer interfaces in humans: a systematic review and individual patient meta-analysis. J Neural Eng 2025; 22:026013. [PMID: 39978072 DOI: 10.1088/1741-2552/adb88e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Objective.Invasive brain-computer interfaces (iBCIs) have evolved significantly since the first neurotrophic electrode was implanted in a human subject three decades ago. Since then, both hardware and software advances have increased the iBCI performance to enable tasks such as decoding conversations in real-time and manipulating external limb prostheses with haptic feedback. In this systematic review, we aim to evaluate the advances in iBCI hardware, software and functionality and describe challenges and opportunities in the iBCI field.Approach.Medline, EMBASE, PubMed and Cochrane databases were searched from inception until 13 April 2024. Primary studies reporting the use of iBCI in human subjects to restore function were included. Endpoints extracted include iBCI electrode type, iBCI implantation, decoder algorithm, iBCI effector, testing and training methodology and functional outcomes. Narrative synthesis of outcomes was done with a focus on hardware and software development trends over time. Individual patient data (IPD) was also collected and an IPD meta-analysis was done to identify factors significant to iBCI performance.Main results.93 studies involving 214 patients were included in this systematic review. The median task performance accuracy for cursor control tasks was 76.00% (Interquartile range [IQR] = 21.2), for motor tasks was 80.00% (IQR = 23.3), and for communication tasks was 93.27% (IQR = 15.3). Current advances in iBCI software include use of recurrent neural network architectures as decoders, while hardware advances such as intravascular stentrodes provide a less invasive alternative for neural recording. Challenges include the lack of standardized testing paradigms for specific functional outcomes and issues with portability and chronicity limiting iBCI usage to laboratory settings.Significance.Our systematic review demonstrated the exponential rate at which iBCIs have evolved over the past two decades. Yet, more work is needed for widespread clinical adoption and translation to long-term home-use.
Collapse
Affiliation(s)
- Mervyn Jun Rui Lim
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jack Yu Tung Lo
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Yong Yi Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hong-Yi Lin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuhang Wang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dewei Tan
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eugene Wang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yin Yin Naing Ma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joel Jia Wei Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ryan Ashraf Jefree
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yeo Tseng Tsai
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Shiferaw BT, Jin MY, Patel M, Henjum LJ, Abd-Elsayed A. Deep Brain Stimulation and Brain-Spine Interface for Functional Restoration in Spinal Cord Injury. Biomedicines 2025; 13:631. [PMID: 40149607 PMCID: PMC11940316 DOI: 10.3390/biomedicines13030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Spinal cord injury (SCI) presents significant challenges in restoring motor function, with limited therapeutic options available. Recent advancements in neuromodulation technologies, such as brain-spine interface (BSI), epidural electrical stimulation (EES), and deep brain stimulation (DBS), offer promising solutions. This review article explores the integration of these approaches, focusing on their potential to restore function in SCI patients. Findings: DBS has shown efficacy in SCI treatment with several stimulation sites identified, including the nucleus raphe magnus (NRM) and periaqueductal gray (PAG). However, transitioning from animal to human studies highlights challenges, including the technical risks of targeting the NRM in humans instead of rodent models. Additionally, several other regions have shown potential for motor rehabilitation, including the midbrain locomotor region (MLR) pathways, cuneiform nucleus (CnF), pedunculopontine nucleus (PPN), and lateral hypothalamic. DBS with EES further supports motor recovery in SCI; however, this approach requires high-DBS amplitude, serotonergic pharmacotherapy, and cortical activity decoding to attenuate stress-associated locomotion. BSI combined with EES has recently emerged as a promising novel therapy. Although human studies are limited, animal models have provided evidence supporting its potential. Despite these advancements, the effectiveness of DBS and combined systems remains limited in cases of complete central denervation. Conclusions: The integration and combination of DBS, BSI, and EES represent a transformational approach to treating and restoring function in patients with SCI. While further research is needed to optimize these strategies, these advancements hold immense potential for improving the quality of life in SCI patients and advancing the field of neuromodulation.
Collapse
Affiliation(s)
| | | | | | | | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI 53792, USA; (B.T.S.); (M.Y.J.); (M.P.); (L.J.H.)
| |
Collapse
|
6
|
Liu M, Fang M, Liu M, Jin S, Liu B, Wu L, Li Z. Knowledge mapping and research trends of brain-computer interface technology in rehabilitation: a bibliometric analysis. Front Hum Neurosci 2024; 18:1486167. [PMID: 39539351 PMCID: PMC11557533 DOI: 10.3389/fnhum.2024.1486167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background Although the application of brain-computer interface (BCI) technology in rehabilitation has been extensively studied, a systematic and comprehensive bibliometric analysis of this area remains lacking. Thus, this study aims to analyze the research progress of BCI technology in rehabilitation through bibliometric methods. Methods The study retrieved relevant publications on BCI technology in rehabilitation from the Web of Science Core Collection (WoSCC) between January 1, 2004, and June 30, 2024. The search was conducted using thematic queries, and the document types included "original articles" and "review articles." Bibliometric analysis and knowledge mapping were performed using the Bibliometrix package in R software and CiteSpace software. Results During the study period, a total of 1,431 publications on BCI technology in rehabilitation were published by 4,932 authors from 1,281 institutions across 79 countries in 386 academic journals. The volume of research literature in this field has shown a steady upward trend. The United States of America (USA) and China are the primary contributors, with Eberhard Karls University of Tübingen being the most active research institution. The journal Frontiers in Neuroscience published the most articles, while the Journal of Neural Engineering was the most cited. Niels Birbaumer not only authored the most articles but also received the highest number of citations. The main research areas include neurology, sports medicine, and ophthalmology. The diverse applications of BCI technology in stroke and spinal cord injury rehabilitation, as well as the evaluation of BCI performance, are current research hotspots. Moreover, deep learning has demonstrated significant potential in BCI technology rehabilitation applications. Conclusion This bibliometric study provides an overview of the research landscape and developmental trends of BCI technology in rehabilitation, offering valuable reference points for researchers in formulating future research strategies.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mingzhu Fang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Jin
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Bin Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
8
|
Li N, He J. Hydrogel-based therapeutic strategies for spinal cord injury repair: Recent advances and future prospects. Int J Biol Macromol 2024; 277:134591. [PMID: 39127289 DOI: 10.1016/j.ijbiomac.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition that can result in significant functional impairment and loss of quality of life. There is a growing interest in developing new therapies for SCI, and hydrogel-based multimodal therapeutic strategies have emerged as a promising approach. They offer several advantages for SCI repair, including biocompatibility, tunable mechanical properties, low immunogenicity, and the ability to deliver therapeutic agents. This article provides an overview of the recent advances in hydrogel-based therapy strategies for SCI repair, particularly within the past three years. We summarize the SCI hydrogels with varied characteristics such as phase-change hydrogels, self-healing hydrogel, oriented fibers hydrogel, and self-assembled microspheres hydrogel, as well as different functional hydrogels such as conductive hydrogels, stimuli-responsive hydrogels, adhesive hydrogel, antioxidant hydrogel, sustained-release hydrogel, etc. The composition, preparation, and therapeutic effect of these hydrogels are briefly discussed and comprehensively evaluated. In the end, the future development of hydrogels in SCI repair is prospected to inspire more researchers to invest in this promising field.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
9
|
Witkin JM, Radin DP, Rana S, Fuller DD, Fusco AF, Demers JC, Pradeep Thakre P, Smith JL, Lippa A, Cerne R. AMPA receptors play an important role in the biological consequences of spinal cord injury: Implications for AMPA receptor modulators for therapeutic benefit. Biochem Pharmacol 2024; 228:116302. [PMID: 38763261 DOI: 10.1016/j.bcp.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Julie C Demers
- Indiana University/Purdue University, Indianapolis, IN, USA
| | - Prajwal Pradeep Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, Ljubljana, Slovenia
| |
Collapse
|
10
|
Brouwer D, Morrin H, Nicholson TR, Terhune DB, Schrijnemaekers M, Edwards MJ, Gelauff J, Shotbolt P. Virtual reality in functional neurological disorder: a theoretical framework and research agenda for use in the real world. BMJ Neurol Open 2024; 6:e000622. [PMID: 38979395 PMCID: PMC11227774 DOI: 10.1136/bmjno-2023-000622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 07/10/2024] Open
Abstract
Functional neurological disorder (FND) is a common and disabling condition at the intersection of neurology and psychiatry. Despite remarkable progress over recent decades, the mechanisms of FND are still poorly understood and there are limited diagnostic tools and effective treatments. One potentially promising treatment modality for FND is virtual reality (VR), which has been increasingly applied to a broad range of conditions, including neuropsychiatric disorders. FND has unique features, many of which suggest the particular relevance for, and potential efficacy of, VR in both better understanding and managing the disorder. In this review, we describe how VR might be leveraged in the treatment and diagnosis of FND (with a primary focus on motor FND and persistent perceptual-postural dizziness given their prominence in the literature), as well as the elucidation of neurocognitive mechanisms and symptom phenomenology. First, we review what has been published to date on the applications of VR in FND and related neuropsychiatric disorders. We then discuss the hypothesised mechanism(s) underlying FND, focusing on the features that are most relevant to VR applications. Finally, we discuss the potential of VR in (1) advancing mechanistic understanding, focusing specifically on sense of agency, attention and suggestibility, (2) overcoming diagnostic challenges and (3) developing novel treatment modalities. This review aims to develop a theoretical foundation and research agenda for the use of VR in FND that might be applicable or adaptable to other related disorders.
Collapse
Affiliation(s)
- David Brouwer
- Department of Neurology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Hamilton Morrin
- Neuropsychiatry Research and Education Group, King's College London Institute of Psychiatry, Psychology & Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Timothy R Nicholson
- Neuropsychiatry Research and Education Group, King's College London Institute of Psychiatry, Psychology & Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Devin B Terhune
- Neuropsychiatry Research and Education Group, King's College London Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Department of Psychology, King's College London Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | | | - Mark J Edwards
- Neuropsychiatry Research and Education Group, King's College London Institute of Psychiatry, Psychology & Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Jeannette Gelauff
- Department of Neurology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Paul Shotbolt
- Neuropsychiatry Research and Education Group, King's College London Institute of Psychiatry, Psychology & Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychological Medicine, King's College London Institute of Psychiatry, Psychology & Neuroscience, London, UK
| |
Collapse
|