1
|
Martinez AP, Chung AC, Huang S, Bisogni AJ, Lin Y, Cao Y, Williams EO, Kim JY, Yang JY, Lin DM. Pcdh19 mediates olfactory sensory neuron coalescence during postnatal stages and regeneration. iScience 2023; 26:108220. [PMID: 37965156 PMCID: PMC10641745 DOI: 10.1016/j.isci.2023.108220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.
Collapse
Affiliation(s)
- Andrew P. Martinez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alexander C. Chung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam J. Bisogni
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yingxin Lin
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Yue Cao
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Eric O. Williams
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Jin Y. Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - David M. Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Paganoni AJJ, Cannarella R, Oleari R, Amoruso F, Antal R, Ruzza M, Olivieri C, Condorelli RA, La Vignera S, Tolaj F, Cariboni A, Calogero AE, Magni P. Insulin-like Growth Factor 1, Growth Hormone, and Anti-Müllerian Hormone Receptors Are Differentially Expressed during GnRH Neuron Development. Int J Mol Sci 2023; 24:13073. [PMID: 37685880 PMCID: PMC10487694 DOI: 10.3390/ijms241713073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are key neuroendocrine cells in the brain as they control reproduction by regulating hypothalamic-pituitary-gonadal axis function. In this context, anti-Müllerian hormone (AMH), growth hormone (GH), and insulin-like growth factor 1 (IGF1) were shown to improve GnRH neuron migration and function in vitro. Whether AMH, GH, and IGF1 signaling pathways participate in the development and function of GnRH neurons in vivo is, however, currently still unknown. To assess the role of AMH, GH, and IGF1 systems in the development of GnRH neuron, we evaluated the expression of AMH receptors (AMHR2), GH (GHR), and IGF1 (IGF1R) on sections of ex vivo mice at different development stages. The expression of AMHR2, GHR, and IGF1R was assessed by immunofluorescence using established protocols and commercial antibodies. The head sections of mice were analyzed at E12.5, E14.5, and E18.5. In particular, at E12.5, we focused on the neurogenic epithelium of the vomeronasal organ (VNO), where GnRH neurons, migratory mass cells, and the pioneering vomeronasal axon give rise. At E14.5, we focused on the VNO and nasal forebrain junction (NFJ), the two regions where GnRH neurons originate and migrate to the hypothalamus, respectively. At E18.5, the median eminence, which is the hypothalamic area where GnRH is released, was analyzed. At E12.5, double staining for the neuronal marker ß-tubulin III and AMHR2, GHR, or IGF1R revealed a signal in the neurogenic niches of the olfactory and VNO during early embryo development. Furthermore, IGF1R and GHR were expressed by VNO-emerging GnRH neurons. At E14.5, a similar expression pattern was found for the neuronal marker ß-tubulin III, while the expression of IGF1R and GHR began to decline, as also observed at E18.5. Of note, hypothalamic GnRH neurons labeled for PLXND1 tested positive for AMHR2 expression. Ex vivo experiments on mouse sections revealed differential protein expression patterns for AMHR2, GHR, and IGF1R at any time point in development between neurogenic areas and hypothalamic compartments. These findings suggest a differential functional role of related systems in the development of GnRH neurons.
Collapse
Affiliation(s)
- Alyssa J. J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 10681, USA
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Renata Antal
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Marco Ruzza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Chiara Olivieri
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Fationa Tolaj
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| |
Collapse
|
3
|
Tsuda M, Masuda T, Kohno K. Microglial diversity in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00124-8. [PMID: 37244781 DOI: 10.1016/j.tins.2023.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Olfactory Regeneration with Nasally Administered Murine Adipose-Derived Stem Cells in Olfactory Epithelium Damaged Mice. Cells 2023; 12:cells12050765. [PMID: 36899901 PMCID: PMC10001053 DOI: 10.3390/cells12050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
In this study, we aimed to determine whether nasally administered murine adipose-derived stem cells (ADSCs) could support olfactory regeneration in vivo. Olfactory epithelium damage was induced in 8-week-old C57BL/6J male mice by intraperitoneal injection of methimazole. Seven days later, OriCell adipose-derived mesenchymal stem cells obtained from green fluorescent protein (GFP) transgenic C57BL/6 mice were nasally administered to the left nostril of these mice, and their innate odor aversion behavior to butyric acid was assessed. Mice showed significant recovery of odor aversion behavior, along with improved olfactory marker protein (OMP) expression on both sides of the upper-middle part of the nasal septal epithelium assessed by immunohistochemical staining 14 d after the treatment with ADSCs compared with vehicle control animals. Nerve growth factor (NGF) was detected in the ADSC culture supernatant, NGF was increased in the nasal epithelium of mice, and GFP-positive cells were observed on the surface of the left side nasal epithelium 24 h after left side nasal administration of ADSCs. The results of this study suggest that the regeneration of olfactory epithelium can be stimulated by nasally administered ADSCs secreting neurotrophic factors, thereby promoting the recovery of odor aversion behavior in vivo.
Collapse
|
5
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Bieniussa L, Kahraman B, Skornicka J, Schulte A, Voelker J, Jablonka S, Hagen R, Rak K. Pegylated Insulin-Like Growth Factor 1 attenuates Hair Cell Loss and promotes Presynaptic Maintenance of Medial Olivocochlear Cholinergic Fibers in the Cochlea of the Progressive Motor Neuropathy Mouse. Front Neurol 2022; 13:885026. [PMID: 35720065 PMCID: PMC9203726 DOI: 10.3389/fneur.2022.885026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of “efferent auditory neuropathy.” Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Baran Kahraman
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Skornicka
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Kristen Rak
| |
Collapse
|
7
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
8
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
9
|
Cartas-Cejudo P, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Tackling the Biological Meaning of the Human Olfactory Bulb Dyshomeostatic Proteome across Neurological Disorders: An Integrative Bioinformatic Approach. Int J Mol Sci 2021; 22:ijms222111340. [PMID: 34768771 PMCID: PMC8583219 DOI: 10.3390/ijms222111340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Olfactory dysfunction is considered an early prodromal marker of many neurodegenerative diseases. Neuropathological changes and aberrant protein aggregates occur in the olfactory bulb (OB), triggering a tangled cascade of molecular events that is not completely understood across neurological disorders. This study aims to analyze commonalities and differences in the olfactory protein homeostasis across neurological backgrounds with different spectrums of smell dysfunction. For that, an integrative analysis was performed using OB proteomics datasets derived from subjects with Alzheimer's disease (AD), Parkinson's disease (PD), mixed dementia (mixD), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD-TDP43), progressive supranuclear palsy (PSP) and amyotrophic lateral sclerosis (ALS) with respect to OB proteome data from neurologically intact controls. A total of 80% of the differential expressed protein products were potentially disease-specific whereas the remaining 20% were commonly altered across two, three or four neurological phenotypes. A multi-level bioinformatic characterization revealed a subset of potential disease-specific transcription factors responsible for the downstream effects detected at the proteome level as well as specific densely connected protein complexes targeted by several neurological phenotypes. Interestingly, common or unique pathways and biofunctions were also identified, providing novel mechanistic clues about each neurological disease at olfactory level. The analysis of olfactory epithelium, olfactory tract and primary olfactory cortical proteotypes in a multi-disease format will functionally complement the OB dyshomeostasis, increasing our knowledge about the neurodegenerative process across the olfactory axis.
Collapse
|
10
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
11
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
12
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
13
|
IGF1R Deficiency Modulates Brain Signaling Pathways and Disturbs Mitochondria and Redox Homeostasis. Biomedicines 2021; 9:biomedicines9020158. [PMID: 33562061 PMCID: PMC7915200 DOI: 10.3390/biomedicines9020158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R)-mediated signaling pathways modulate important neurophysiological aspects in the central nervous system, including neurogenesis, synaptic plasticity and complex cognitive functions. In the present study, we intended to characterize the impact of IGF1R deficiency in the brain, focusing on PI3K/Akt and MAPK/ERK1/2 signaling pathways and mitochondria-related parameters. For this purpose, we used 13-week-old UBC-CreERT2; Igf1rfl/fl male mice in which Igf1r was conditionally deleted. IGF1R deficiency caused a decrease in brain weight as well as the activation of the IR/PI3K/Akt and inhibition of the MAPK/ERK1/2/CREB signaling pathways. Despite no alterations in the activity of caspases 3 and 9, a significant alteration in phosphorylated GSK3β and an increase in phosphorylated Tau protein levels were observed. In addition, significant disturbances in mitochondrial dynamics and content and altered activity of the mitochondrial respiratory chain complexes were noticed. An increase in oxidative stress, characterized by decreased nuclear factor E2-related factor 2 (NRF2) protein levels and aconitase activity and increased H2O2 levels were also found in the brain of IGF1R-deficient mice. Overall, our observations confirm the complexity of IGF1R in mediating brain signaling responses and suggest that its deficiency negatively impacts brain cells homeostasis and survival by affecting mitochondria and redox homeostasis.
Collapse
|
14
|
Short CA, Onesto MM, Rempel SK, Catlett TS, Gomez TM. Familiar growth factors have diverse roles in neural network assembly. Curr Opin Neurobiol 2021; 66:233-239. [PMID: 33477094 PMCID: PMC8058242 DOI: 10.1016/j.conb.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Massimo M Onesto
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States; Stanford University School of Medicine, United States
| | - Sarah K Rempel
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy S Catlett
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
15
|
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2021; 12:735-757. [PMID: 33491126 PMCID: PMC7829061 DOI: 10.1007/s13346-020-00891-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Over the past 10 years, the interest in intranasal drug delivery in pharmaceutical R&D has increased. This review article summarises information on intranasal administration for local and systemic delivery, as well as for CNS indications. Nasal delivery offers many advantages over standard systemic delivery systems, such as its non-invasive character, a fast onset of action and in many cases reduced side effects due to a more targeted delivery. There are still formulation limitations and toxicological aspects to be optimised. Intranasal drug delivery in the field of drug development is an interesting delivery route for the treatment of neurological disorders. Systemic approaches often fail to efficiently supply the CNS with drugs. This review paper describes the anatomical, histological and physiological basis and summarises currently approved drugs for administration via intranasal delivery. Further, the review focuses on toxicological considerations of intranasally applied compounds and discusses formulation aspects that need to be considered for drug development.
Collapse
Affiliation(s)
- Lea-Adriana Keller
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
16
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
17
|
Chen ST, Lai WJ, Zhang WJ, Chen QP, Zhou LB, So KF, Shi LL. Insulin-like growth factor 1 partially rescues early developmental defects caused by SHANK2 knockdown in human neurons. Neural Regen Res 2020; 15:2335-2343. [PMID: 32594058 PMCID: PMC7749486 DOI: 10.4103/1673-5374.285002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
SHANK2 is a scaffold protein that serves as a protein anchor at the postsynaptic density in neurons. Genetic variants of SHANK2 are strongly associated with synaptic dysfunction and the pathophysiology of autism spectrum disorder. Recent studies indicate that early neuronal developmental defects play a role in the pathogenesis of autism spectrum disorder, and that insulin-like growth factor 1 has a positive effect on neurite development. To investigate the effects of SHANK2 knockdown on early neuronal development, we generated a sparse culture system using human induced pluripotent stem cells, which then differentiated into neural progenitor cells after 3-14 days in culture, and which were dissociated into single neurons. Neurons in the experimental group were infected with shSHANK2 lentivirus carrying a red fluorescent protein reporter (shSHANK2 group). Control neurons were infected with scrambled shControl lentivirus carrying a red fluorescent protein reporter (shControl group). Neuronal somata and neurites were reconstructed based on the lentiviral red fluorescent protein signal. Developmental dendritic and motility changes in VGLUT1+ glutamatergic neurons and TH+ dopaminergic neurons were then evaluated in both groups. Compared with shControl VGLUT1+ neurons, the dendritic length and arborizations of shSHANK2 VGLUT1+ neurons were shorter and fewer, while cell soma speed was higher. Furthermore, dendritic length and arborization were significantly increased after insulin-like growth factor 1 treatment of shSHANK2 neurons, while cell soma speed remained unaffected. These results suggest that insulin-like growth factor 1 can rescue morphological defects, but not the change in neuronal motility. Collectively, our findings demonstrate that SHANK2 deficiency perturbs early neuronal development, and that IGF1 can partially rescue the neuronal defects caused by SHANK2 knockdown. All experimental procedures and protocols were approved by the Laboratory Animal Ethics Committee of Jinan University, China (approval No. 20170228010) on February 28, 2017.
Collapse
Affiliation(s)
- Shu-Ting Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Wan-Jing Lai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Clinical Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Jia Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Qing-Pei Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Bing Zhou
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Ling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
18
|
Axonal Odorant Receptors Mediate Axon Targeting. Cell Rep 2020; 29:4334-4348.e7. [PMID: 31875544 PMCID: PMC6941231 DOI: 10.1016/j.celrep.2019.11.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 12/05/2022] Open
Abstract
In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting. Axonal odorant receptors respond to cues elaborated in the olfactory bulb PEBP1, expressed in the olfactory bulb, is a putative ligand of axonal receptors Genetic ablation of PEBP1 results in disrupted olfactory map in vivo Axonal odorant receptors modulate axon targeting in the sensory map formation
Collapse
|
19
|
Ueha R, Kondo K, Ueha S, Yamasoba T. Dose-Dependent Effects of Insulin-Like Growth Factor 1 in the Aged Olfactory Epithelium. Front Aging Neurosci 2018; 10:385. [PMID: 30515092 PMCID: PMC6256067 DOI: 10.3389/fnagi.2018.00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Olfaction is known to be impaired by aging. We hypothesized that insulin-like growth factor-1 (IGF-1) administered at an appropriate dose could prevent age-induced negative effects on olfactory receptor neurons (ORNs). We explored the effects of low- and high-dose administration of IGF-1 on the ORN cell system in aged mice and investigated the involvement of the cellular mechanisms of IGF-1 in the regeneration of ORNs in aged mice. Methods: We subcutaneously administered recombinant human IGF-1 (rhIGF-1) to 16-month-old male mice over 56 days, and then examined the histological effects of rhGF-1 on cellular composition, cell proliferation, and cell death in the aged olfactory epithelium (OE), by comparing among saline-treated and low- and high-dose rhIGF-1-treated mice. Results: Low-dose rhIGF-1 administration increased the numbers of olfactory progenitors, immature ORNs, and mature ORNs in the OE, despite an increase in Cas3+ apoptotic cells. Notably, high-dose rhIGF-1 administration increased the numbers of only immature ORNs, not olfactory progenitors and mature ORNs, with a concurrent increase in apoptotic cells. Conclusion: Our data suggest that in aged mice, IGF-1 administered at an appropriate dose could increase the number of mature ORNs and further human studies may contribute to the development of treatments for aging-related olfactory impairment.
Collapse
Affiliation(s)
- Rumi Ueha
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Abstract
Olfactory receptors are expressed by different cell types throughout the body and regulate physiological cell functions beyond olfaction. In particular, the olfactory receptor OR2AT4 has been shown to stimulate keratinocyte proliferation in the skin. Here, we show that the epithelium of human hair follicles, particularly the outer root sheath, expresses OR2AT4, and that specific stimulation of OR2AT4 by a synthetic sandalwood odorant (Sandalore®) prolongs human hair growth ex vivo by decreasing apoptosis and increasing production of the anagen-prolonging growth factor IGF-1. In contrast, co-administration of the specific OR2AT4 antagonist Phenirat® and silencing of OR2AT4 inhibit hair growth. Together, our study identifies that human hair follicles can engage in olfactory receptor-dependent chemosensation and require OR2AT4-mediated signaling to sustain their growth, suggesting that olfactory receptors may serve as a target in hair loss therapy. Increasing evidence suggest that olfactory receptors can carry additional functions besides olfaction. Here, Chéret et al. show that stimulation of the olfactory receptor ORT2A4 by the odorant Sandalore® stimulates growth of human scalp hair follicles ex vivo, suggesting the use of ORT2A4-targeting odorants as hair growth-promoting agents.
Collapse
|
21
|
Xu F, Takahashi H, Tanaka Y, Ichinose S, Niwa S, Wicklund MP, Hirokawa N. KIF1Bβ mutations detected in hereditary neuropathy impair IGF1R transport and axon growth. J Cell Biol 2018; 217:3480-3496. [PMID: 30126838 PMCID: PMC6168269 DOI: 10.1083/jcb.201801085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/31/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Uncovering the mechanistic link between kinesin motors and neuropathy, Xu et al. identify functional KIF1Bβ mutations in human hereditary neuropathy to analyze them in mouse models. They propose that KIF1Bβ transports IGF1R and facilitates axonal outgrowth. Both of these effects are significantly affected by the clinical mutations. KIF1Bβ is a kinesin-3 family anterograde motor protein essential for neuronal development, viability, and function. KIF1Bβ mutations have previously been reported in a limited number of pedigrees of Charcot-Marie-Tooth disease type 2A (CMT2A) neuropathy. However, the gene responsible for CMT2A is still controversial, and the mechanism of pathogenesis remains elusive. In this study, we show that the receptor tyrosine kinase IGF1R is a new direct binding partner of KIF1Bβ, and its binding and transport is specifically impaired by the Y1087C mutation of KIF1Bβ, which we detected in hereditary neuropathic patients. The axonal outgrowth and IGF-I signaling of Kif1b−/− neurons were significantly impaired, consistent with decreased surface IGF1R expression. The complementary capacity of KIF1Bβ-Y1087C of these phenotypes was significantly impaired, but the binding capacity to synaptic vesicle precursors was not affected. These data have supported the relevance of KIF1Bβ in IGF1R transport, which may give new clue to the neuropathic pathogenesis.
Collapse
Affiliation(s)
- Fang Xu
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Takahashi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Niwa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan .,Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior. J Neurosci 2018; 38:5220-5236. [PMID: 29739870 DOI: 10.1523/jneurosci.0061-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for pregnancy-associated plasma protein aa (pappaa) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated pappaa mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of pappaa mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells. pappaa is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved pappaa mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.SIGNIFICANCE STATEMENT Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue: pregnancy-associated plasma protein aa (pappaa), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.
Collapse
|
23
|
Li JA, Zhao CF, Li SJ, Zhang J, Li ZH, Zhang Q, Yang XY, Zan CF. Modified insulin-like growth factor 1 containing collagen-binding domain for nerve regeneration. Neural Regen Res 2018; 13:298-303. [PMID: 29557380 PMCID: PMC5879902 DOI: 10.4103/1673-5374.226400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a potential nutrient for nerve repair. However, it is impractical as a therapy because of its limited half-life, rapid clearance, and limited target specificity. To achieve targeted and long-lasting treatment, we investigated the addition of a binding structure by fusing a collagen-binding domain to IGF-1. After confirming its affinity for collagen, the biological activity of this construct was examined by measuring cell proliferation after transfection into PC12 and Schwann cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Immunofluorescence staining was conducted to detect neurofilament and microtubule-associated protein 2 expression, while real time-polymerase chain reaction was utilized to determine IGF-1 receptor and nerve growth factor mRNA expression. Our results demonstrate a significant increase in collagen-binding activity of the recombinant protein compared with IGF-1. Moreover, the recombinant protein promoted proliferation of PC12 and Schwann cells, and increased the expression of neurofilament and microtubule-associated protein 2. Importantly, the recombinant protein also stimulated sustained expression of IGF-1 receptor and nerve growth factor mRNA for days. These results show that the recombinant protein achieved the goal of targeting and long-lasting treatment, and thus could become a clinically used factor for promoting nerve regeneration with a prolonged therapeutic effect.
Collapse
Affiliation(s)
- Jian-An Li
- Department of Orthopedics, Second Hospital of Jilin University; Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, China
| | - Chang-Fu Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Shao-Jun Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, China
| | - Jun Zhang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Hua Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, China
| | - Qiao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xiao-Yu Yang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Fang Zan
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
24
|
Sural-Fehr T, Bongarzone ER. How membrane dysfunction influences neuronal survival pathways in sphingolipid storage disorders. J Neurosci Res 2017; 94:1042-8. [PMID: 27638590 DOI: 10.1002/jnr.23763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022]
Abstract
Sphingolipidoses are a class of inherited diseases that result from the toxic accumulation of undigested sphingolipids in lysosomes and other cellular membranes. Sphingolipids are particularly enriched in cells of the nervous system, and their excessive accumulation during disease has a significant impact on the nervous system. Neuronal dysfunction followed by neurological compromise is a common feature in many of these diseases; however, the underlying mechanisms that cause vulnerability of neurons are not fully understood. The plasma membrane plays a critical role in regulating cellular survival pathways, and its dysfunction has been implicated in neuronal failure in various adult-onset neuropathies. In the context of sphingolipidoses, we hypothesize that gradual accumulation of undigested lipids in plasma membranes causes local disruptions in lipid raft domains, leading to deregulation of multiple signaling pathways important for neuronal survival and function. We propose that defects in downstream signaling as a result of membrane dysfunction are common mechanisms underlying neuronal vulnerability in sphingolipid storage disorders with neurological compromise. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuba Sural-Fehr
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
25
|
IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning. Neuron 2017; 95:106-122.e5. [PMID: 28683263 DOI: 10.1016/j.neuron.2017.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/17/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information.
Collapse
|
26
|
IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS One 2017; 12:e0170083. [PMID: 28076448 PMCID: PMC5226784 DOI: 10.1371/journal.pone.0170083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022] Open
Abstract
Nutrition during the perinatal period programs body growth. Growth hormone (GH) secretion from the pituitary regulates body growth and is controlled by Growth Hormone Releasing Hormone (GHRH) neurons located in the arcuate nucleus of the hypothalamus. We observed that dietary restriction during the early postnatal period (i.e. lactation) in mice influences postnatal growth by permanently altering the development of the somatotropic axis in the pituitary gland. This alteration may be due to a lack of GHRH signaling during this critical developmental period. Indeed, underfed pups showed decreased insulin-like growth factor I (IGF-I) plasma levels, which are associated with lower innervation of the median eminence by GHRH axons at 10 days of age relative to normally fed pups. IGF-I preferentially stimulated axon elongation of GHRH neurons in in vitro arcuate explant cultures from 7 day-old normally fed pups. This IGF-I stimulating effect was selective since other arcuate neurons visualized concomitantly by neurofilament labeling, or AgRP immunochemistry, did not significantly respond to IGF-I stimulation. Moreover, GHRH neurons in explants from age-matched underfed pups lost the capacity to respond to IGF-I stimulation. Molecular analyses indicated that nutritional restriction was associated with impaired activation of AKT. These results highlight a role for IGF-I in axon elongation that appears to be cell selective and participates in the complex cellular mechanisms that link underfeeding during the early postnatal period with programming of the growth trajectory.
Collapse
|
27
|
Fadda A, Bärtschi M, Hemphill A, Widmer HR, Zurbriggen A, Perona P, Vidondo B, Oevermann A. Primary Postnatal Dorsal Root Ganglion Culture from Conventionally Slaughtered Calves. PLoS One 2016; 11:e0168228. [PMID: 27936156 PMCID: PMC5148591 DOI: 10.1371/journal.pone.0168228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders in ruminants have an important impact on veterinary health, but very few host-specific in vitro models have been established to study diseases affecting the nervous system. Here we describe a primary neuronal dorsal root ganglia (DRG) culture derived from calves after being conventionally slaughtered for food consumption. The study focuses on the in vitro characterization of bovine DRG cell populations by immunofluorescence analysis. The effects of various growth factors on neuron viability, neurite outgrowth and arborisation were evaluated by morphological analysis. Bovine DRG neurons are able to survive for more than 4 weeks in culture. GF supplementation is not required for neuronal survival and neurite outgrowth. However, exogenously added growth factors promote neurite outgrowth. DRG cultures from regularly slaughtered calves represent a promising and sustainable host specific model for the investigation of pain and neurological diseases in bovines.
Collapse
Affiliation(s)
- A. Fadda
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Theodor Kocher Institute, University of Bern, Switzerland
| | - M. Bärtschi
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A. Hemphill
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - H. R. Widmer
- Neurocenter and Regenerative Neuroscience Cluster, University Hospital and University of Bern, Bern, Switzerland
| | - A. Zurbriggen
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - P. Perona
- School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - B. Vidondo
- Veterinary Public Health Institute (VPHI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A. Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro 2016; 3:eN-NWR-0169-16. [PMID: 27957530 PMCID: PMC5136615 DOI: 10.1523/eneuro.0169-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
The increasing availability of transcriptomic technologies within the last decade has facilitated high-throughput identification of gene expression differences that define distinct cell types as well as the molecular pathways that drive their specification. The retinal projection neurons, retinal ganglion cells (RGCs), can be categorized into distinct morphological and functional subtypes and by the laterality of their projections. Here, we present a method for purifying the sparse population of ipsilaterally projecting RGCs in mouse retina from their contralaterally projecting counterparts during embryonic development through rapid retrograde labeling followed by fluorescence-activated cell sorting. Through microarray analysis, we uncovered the distinct molecular signatures that define and distinguish ipsilateral and contralateral RGCs during the critical period of axonal outgrowth and decussation, with more than 300 genes differentially expressed within these two cell populations. Among the differentially expressed genes confirmed through in vivo expression validation, several genes that mark “immaturity” are expressed within postmitotic ipsilateral RGCs. Moreover, at least one complementary pair, Igf1 and Igfbp5, is upregulated in contralateral or ipsilateral RGCs, respectively, and may represent signaling pathways that determine ipsilateral versus contralateral RGC identity. Importantly, the cell cycle regulator cyclin D2 is highly expressed in peripheral ventral retina with a dynamic expression pattern that peaks during the period of ipsilateral RGC production. Thus, the molecular signatures of ipsilateral and contralateral RGCs and the mechanisms that regulate their differentiation are more diverse than previously expected.
Collapse
|
29
|
Oliva C, Hassan BA. Receptor Tyrosine Kinases and Phosphatases in Neuronal Wiring: Insights From Drosophila. Curr Top Dev Biol 2016; 123:399-432. [PMID: 28236973 DOI: 10.1016/bs.ctdb.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tyrosine phosphorylation is at the crossroads of many signaling pathways. Brain wiring is not an exception, and several receptor tyrosine kinases (RTKs) and tyrosine receptor phosphates (RPTPs) have been involved in this process. Considerable work has been done on RTKs, and for many of them, detailed molecular mechanisms and functions in several systems have been characterized. In contrast, RPTPs have been studied considerably less and little is known about their ligands and substrates. In both families, we find redundancy between different members to accomplish particular wiring patterns. Strikingly, some RTKs and RPTPs have lost their catalytic activity during evolution, but not their importance in biological processes. In this regard, we have to keep in mind that these proteins have multiple domains and some of their functions are independent of tyrosine phosphorylation/dephosphorylation. Since RTKs and RPTPs are enzymes involved not only in early stages of axon and dendrite pathfinding but also in synapse formation and physiology, they have a potential as drug targets. Drosophila has been a key model organism in the search of a better understanding of brain wiring, and its sophisticated toolbox is very suitable for studying the function of genes with pleiotropic functions such as RTKs and RPTPs, from wiring to synaptic formation and function. In these review, we mainly cover findings from this model organism and complement them with discoveries in vertebrate systems.
Collapse
Affiliation(s)
- Carlos Oliva
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad of Chile, Santiago, Chile.
| | - Bassem A Hassan
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Institut du Cerveau et la Moelle (ICM)-Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris, France.
| |
Collapse
|
30
|
Wise TL. Changes in insulin-like growth factor signaling alter phenotypes in Fragile X Mice. GENES BRAIN AND BEHAVIOR 2016; 16:241-249. [DOI: 10.1111/gbb.12340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- T. L. Wise
- Department of Human Genetics; New York State Institute for Basic Research in Developmental Disabilities; Staten Island NY USA
| |
Collapse
|
31
|
Nieto-Estévez V, Defterali Ç, Vicario-Abejón C. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain. Front Neurosci 2016; 10:52. [PMID: 26941597 PMCID: PMC4763060 DOI: 10.3389/fnins.2016.00052] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/05/2016] [Indexed: 12/28/2022] Open
Abstract
The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits.
Collapse
Affiliation(s)
- Vanesa Nieto-Estévez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto CajalMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Çağla Defterali
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto CajalMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Carlos Vicario-Abejón
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto CajalMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
32
|
Influence of insulin-like growth factor I on nerve regeneration using allografts: a sciatic nerve model. J Craniofac Surg 2015; 25:1510-4. [PMID: 25006924 DOI: 10.1097/scs.0000000000000783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Effects of insulin-like growth factor I (IGF I) on peripheral nerve regeneration was studied using allografts in a rat sciatic nerve model. Thirty male white Wistar rats were divided into 3 experimental groups (n = 10) randomly: normal control group (NC), allograft group (ALLO), and IGF I-treated group (ALLO/IGF). In the NC group, the left sciatic nerve was exposed through a gluteal muscle incision and, after homeostasis, the muscle was sutured. In the ALLO group, the left sciatic nerve was exposed through a gluteal muscle incision and transected proximal to the tibioperoneal bifurcation where a 10-mm segment was excised. The same procedure was performed in the ALLO/IGF group. The harvested nerves of the rats of the ALLO group were served as allograft for the ALLO/IGF group and vice versa. The NC and ALLO groups received 10 μL of sterile phosphate buffered saline intraperitoneally once a day for 1 week, and the ALLO/IGF group received 10 μL of IGF I (100 ng/kg per day) intraperitoneally once a day for 1 week. Behavioral testing, sciatic nerve functional study and the gastrocnemius muscle mass showed earlier regeneration of axons in the ALLO/IGF group than in the ALLO group (P < 0.05). Administration of IGF I could accelerate functional recovery after nerve allografting in the sciatic nerve and may have clinical implications for the surgical management of patients after facial nerve transection.
Collapse
|
33
|
Ciudad-Roberts A, Camarasa J, Ciudad CJ, Pubill D, Escubedo E. Alcohol enhances the psychostimulant and conditioning effects of mephedrone in adolescent mice; postulation of unique roles of D3 receptors and BDNF in place preference acquisition. Br J Pharmacol 2015; 172:4970-84. [PMID: 26228024 DOI: 10.1111/bph.13266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The psychostimulant mephedrone is often consumed in combination with alcohol (EtOH). This kind of drug consumption during adolescence is a matter of concern. EXPERIMENTAL APPROACH We studied, in adolescent CD-1 mice, whether EtOH could enhance the psychostimulant (locomotor acivity) and rewarding [conditioned place preference (CPP)] effects of mephedrone. We also determined the transcriptional changes associated with a conditioning treatment with these drugs. KEY RESULTS Mephedrone (10 mg·kg(-1)) increased locomotor activity, which was further enhanced by 40% when combined with EtOH (1 g·kg(-1)). This enhancement was blocked by haloperidol. Furthermore, mephedrone (25 mg·kg(-1)) induced CPP, which increased by 70% when administered with a dose of EtOH that was not conditioning by itself (0.75 g·kg(-1)). There was enhanced expression of the D3 dopamine receptor mRNA (Drd3) and Arpc5 in all drug-treated groups. The D3 receptor antagonist SB-277011A and the BDNF receptor antagonist ANA-12 completely prevented CPP as well as the increases in Drd3 in all groups. Accordingly, increased expression of BDNF mRNA in medial prefrontal cortex was detected at 2 and 4 h after mephedrone administration. CONCLUSIONS AND IMPLICATIONS If translated to humans, the enhancement of mephedrone effects by ethanol could result in increased abuse liability. D3 receptors and BDNF play a key role in the establishment of CPP by mephedrone, although an accompanying increase in other synaptic plasticity-related genes may also be necessary.
Collapse
Affiliation(s)
- Andrés Ciudad-Roberts
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Camarasa
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - David Pubill
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Iwamoto T, Ouchi Y. Emerging evidence of insulin-like growth factor 2 as a memory enhancer: a unique animal model of cognitive dysfunction with impaired adult neurogenesis. Rev Neurosci 2015; 25:559-74. [PMID: 24778346 DOI: 10.1515/revneuro-2014-0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022]
Abstract
In the current aging society, cognitive dysfunction is one of the most serious issues that should be urgently resolved. It also affects a wide range of age groups harboring neurological and psychiatric disorders, such as Alzheimer's disease and schizophrenia. Although the molecular mechanism of memory impairment still remains to be determined, neuronal loss and dysfunction has been revealed to mainly attribute to its pathology. The discovery of neural stem cells in the adult brain that are proliferating and able to generate functional neurons has given rise to the idea that neuronal loss could be rescued by manipulating endogenous neural progenitor and stem cells. To this end, we must characterize them in detail and their developmental programming must be better understood. A growing body of evidence has indicated that insulin-like peptides are involved in learning and memory and maintenance of neural progenitor and stem cells, and clinical trials of insulin as a memory enhancer have begun. In contrast to the expectation of insulin and IGF1, the roles of IGF2 in cognitive ability have been poorly understood. However, recent evidence demonstrated in rodents suggests that IGF2 may play a pivotal role in adult neurogenesis and cognitive function. Here, we would like to review the rapidly growing world of IGF2 in cognitive neuroscience and introduce the evidence that its deficit is indeed involved in the impairment of the hippocampal neurogenesis and cognitive dysfunction in the model mouse of 22q11.2 deletion syndrome, which deletes Dgcr8, a critical gene for microRNA processing.
Collapse
|
35
|
Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol 2014; 68:76-81. [PMID: 25300732 DOI: 10.1016/j.exger.2014.10.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan.
Collapse
|
36
|
Differential organ phenotypes after postnatal Igf1r gene conditional deletion induced by tamoxifen in UBC-CreERT2; Igf1r fl/fl double transgenic mice. Transgenic Res 2014; 24:279-94. [DOI: 10.1007/s11248-014-9837-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 11/25/2022]
|
37
|
Lau HE, Chalasani SH. Divergent and convergent roles for insulin-like peptides in the worm, fly and mammalian nervous systems. INVERTEBRATE NEUROSCIENCE 2014; 14:71-8. [PMID: 24395463 PMCID: PMC4163192 DOI: 10.1007/s10158-013-0166-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022]
Abstract
Insulin signaling plays a critical role in coupling external changes to animal physiology and behavior. Despite remarkable conservation in the insulin signaling pathway components across species, divergence in the mechanism and function of the signal is evident. Focusing on recent findings from C. elegans, D. melanogaster and mammals, we discuss the role of insulin signaling in regulating adult neuronal function and behavior. In particular, we describe the transcription-dependent and transcription-independent aspects of insulin signaling across these three species. Interestingly, we find evidence of diverse mechanisms underlying complex networks of peptide action in modulating nervous system function.
Collapse
Affiliation(s)
- Hiu E Lau
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
38
|
Matsui H, Noguchi T, Takakusaki K, Kashiwayanagi M. Co-localization of TRPV2 and Insulin-Like Growth Factor-I Receptor in Olfactory Neurons in Adult and Fetal Mouse. Biol Pharm Bull 2014; 37:1907-12. [DOI: 10.1248/bpb.b14-00413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hitoshi Matsui
- Department of Sensory Physiology, Asahikawa Medical University
| | | | | | | |
Collapse
|
39
|
Agis-Balboa RC, Fischer A. Generating new neurons to circumvent your fears: the role of IGF signaling. Cell Mol Life Sci 2014; 71:21-42. [PMID: 23543251 PMCID: PMC11113432 DOI: 10.1007/s00018-013-1316-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Abstract
Extinction of fear memory is a particular form of cognitive function that is of special interest because of its involvement in the treatment of anxiety and mood disorders. Based on recent literature and our previous findings (EMBO J 30(19):4071-4083, 2011), we propose a new hypothesis that implies a tight relationship among IGF signaling, adult hippocampal neurogenesis and fear extinction. Our proposed model suggests that fear extinction-induced IGF2/IGFBP7 signaling promotes the survival of neurons at 2-4 weeks old that would participate in the discrimination between the original fear memory trace and the new safety memory generated during fear extinction. This is also called "pattern separation", or the ability to distinguish similar but different cues (e.g., context). To understand the molecular mechanisms underlying fear extinction is therefore of great clinical importance.
Collapse
Affiliation(s)
- R C Agis-Balboa
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Grisebach Str. 5, 37077, Göttingen, Germany,
| | | |
Collapse
|
40
|
Effect of local administration of insulin-like growth factor I combined with inside-out artery graft on peripheral nerve regeneration. Injury 2013; 44:1295-301. [PMID: 23747124 DOI: 10.1016/j.injury.2013.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 02/02/2023]
Abstract
The objective was to assess the effect of topically administered insulin-like growth factor (IGF I) on peripheral nerve regeneration and functional recovery. Eighty male healthy white Wistar rats were divided into four experimental groups (n=20), randomly: in transected group (TC), the left sciatic nerve was transected and stumps were fixed in the adjacent muscle. In treatment group, defect was bridged using an inside-out artery graft (IOAG/IGF) filled with 10 μL IGF I (100 ng/kg). In artery graft group (IOAG), the graft was filled with phosphate-buffered saline alone. In sham-operated group (SHAM), sciatic nerve was exposed and manipulated. Each group was subdivided into five subgroups of five animals each and regenerated nerve fibres were studied 4, 8, 12 and 16 weeks after surgery. Behavioural testing, sciatic nerve functional study, gastrocnemius muscle mass and morphometric indices confirmed faster recovery of regenerated axons in IOAG/IGF than IOAG group (P<0.05). In immunohistochemistry, location of reactions to S-100 in IOAG/IGF was clearly more positive than that in IOAG group. When loaded in an artery graft, IGF I accelerated and improved functional recovery and morphometric indices of sciatic nerve.
Collapse
|
41
|
Okano T, Kelley MW. Expression of insulin-like growth factor binding proteins during mouse cochlear development. Dev Dyn 2013; 242:1210-21. [DOI: 10.1002/dvdy.24005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/16/2013] [Accepted: 06/16/2013] [Indexed: 12/23/2022] Open
Affiliation(s)
- Takayuki Okano
- Laboratory of Cochlear Development; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda Maryland
| | - Matthew W. Kelley
- Laboratory of Cochlear Development; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
42
|
Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 2013; 5:27. [PMID: 23847531 PMCID: PMC3698444 DOI: 10.3389/fnagi.2013.00027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.
Collapse
Affiliation(s)
- William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Li H, Dong H, Li J, Liu H, Liu Z, Li Z. Neuroprotective effect of insulin-like growth factor-1: effects on tyrosine kinase receptor (Trk) expression in dorsal root ganglion neurons with glutamate-induced excitotoxicity in vitro. Brain Res Bull 2013; 97:86-95. [PMID: 23769847 DOI: 10.1016/j.brainresbull.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) may play an important role in regulating the expression of distinct tyrosine kinase receptor (Trk) in primary sensory dorsal root ganglion (DRG) neurons. Glutamate (Glu) is the main excitatory neurotransmitter and induces neuronal excitotoxicity for primary sensory neurons. It is not known whether IGF-1 influences expression of TrkA, TrkB, and TrkC in DRG neurons with excitotoxicity induced by Glu. In the present study, primary cultured DRG neurons with Glu-induced excitotoxicity were used to determine the effects of IGF-1 on TrkA, TrkB, and TrkC expression. The results showed that IGF-1 increased the expression of TrkA and TrkB and their mRNAs, but not TrkC and its mRNA, in primary cultured DRG neurons with excitotoxicity induced by Glu. Interestingly, neither the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 nor the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. IGF-1 may play an important role in regulating different Trk receptor expression in DRG neurons through ERK1/2 and PI3K/Akt signaling pathways. The contribution of distinct Trk receptors might be one of the mechanisms that IGF-1 rescues dying neurons from Glu excitotoxic injury. These data imply that IGF-1 signaling might be a potential target on modifying distinct Trk receptor-mediated biological effects of primary sensory neurons with excitotoxicity.
Collapse
Affiliation(s)
- Hao Li
- Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China.
| | | | | | | | | | | |
Collapse
|
44
|
Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins. J Neurosci 2013; 33:1714-27. [PMID: 23345244 PMCID: PMC3711587 DOI: 10.1523/jneurosci.4087-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complexins are SNARE-complex binding proteins essential for the Ca(2+)-triggered exocytosis mediated by synaptotagmin-1, -2, -7, or -9, but the possible role of complexins in other types of exocytosis controlled by other synaptotagmin isoforms remains unclear. Here we show that, in mouse olfactory bulb neurons, synaptotagmin-1 localizes to synaptic vesicles and to large dense-core secretory vesicles as reported previously, whereas synaptotagmin-10 localizes to a distinct class of peptidergic secretory vesicles containing IGF-1. Both synaptotagmin-1-dependent synaptic vesicle exocytosis and synaptotagmin-10-dependent IGF-1 exocytosis were severely impaired by knockdown of complexins, demonstrating that complexin acts as a cofactor for both synaptotagmin-1 and synaptotagmin-10 despite the functional differences between these synaptotagmins. Rescue experiments revealed that only the activating but not the clamping function of complexins was required for IGF-1 exocytosis controlled by synaptotagmin-10. Thus, our data indicate that complexins are essential for activation of multiple types of Ca(2+)-induced exocytosis that are regulated by different synaptotagmin isoforms. These results suggest that different types of regulated exocytosis are mediated by similar synaptotagmin-dependent fusion mechanisms, that particular synaptotagmin isoforms confer specificity onto different types of regulated exocytosis, and that complexins serve as universal synaptotagmin adaptors for all of these types of exocytosis independent of which synaptotagmin isoform is involved.
Collapse
|
45
|
Alterations in tyrosine kinase receptor (Trk) expression induced by insulin-like growth factor-1 in cultured dorsal root ganglion neurons. Brain Res Bull 2013; 90:25-34. [DOI: 10.1016/j.brainresbull.2012.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/27/2022]
|
46
|
Lodovichi C, Belluscio L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda) 2012; 27:200-12. [PMID: 22875451 DOI: 10.1152/physiol.00015.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In mammals, smell is mediated by odorant receptors expressed by sensory neurons in the nose. These specialized receptors are found both on olfactory sensory neurons' cilia and axon terminals. Although the primary function of ciliary odorant receptors is to detect odorants, their axonal role remains unclear but is thought to involve axon guidance. This review discusses findings that show axonal odorant receptors are indeed functional and capable of modulating neural connectivity.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Venetian Institute of Molecular Medicine, and Institute of Neuroscience-CNR, Padua, Italy
| | | |
Collapse
|
47
|
Cho JH, Kam JWK, Cloutier JF. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb. Dev Biol 2012; 371:269-79. [PMID: 22981605 DOI: 10.1016/j.ydbio.2012.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/16/2022]
Abstract
Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.
Collapse
Affiliation(s)
- Jin H Cho
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, Canada H3A 2B4
| | | | | |
Collapse
|
48
|
Paul A, Cai Y, Atwal GS, Huang ZJ. Developmental Coordination of Gene Expression between Synaptic Partners During GABAergic Circuit Assembly in Cerebellar Cortex. Front Neural Circuits 2012; 6:37. [PMID: 22754500 PMCID: PMC3385560 DOI: 10.3389/fncir.2012.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/01/2012] [Indexed: 01/14/2023] Open
Abstract
The assembly of neural circuits involves multiple sequential steps such as the specification of cell-types, their migration to proper brain locations, morphological and physiological differentiation, and the formation and maturation of synaptic connections. This intricate and often prolonged process is guided by elaborate genetic mechanisms that regulate each step. Evidence from numerous systems suggests that each cell-type, once specified, is endowed with a genetic program that unfolds in response to, and is regulated by, extrinsic signals, including cell–cell and synaptic interactions. To a large extent, the execution of this intrinsic program is achieved by the expression of specific sets of genes that support distinct developmental processes. Therefore, a comprehensive analysis of the developmental progression of gene expression in synaptic partners of neurons may provide a basis for exploring the genetic mechanisms regulating circuit assembly. Here we examined the developmental gene expression profiles of well-defined cell-types in a stereotyped microcircuit of the cerebellar cortex. We found that the transcriptomes of Purkinje cell and stellate/basket cells are highly dynamic throughout postnatal development. We revealed “phasic expression” of transcription factors, ion channels, receptors, cell adhesion molecules, gap junction proteins, and identified distinct molecular pathways that might contribute to sequential steps of cerebellar inhibitory circuit formation. We further revealed a correlation between genomic clustering and developmental co-expression of hundreds of transcripts, suggesting the involvement of chromatin level gene regulation during circuit formation.
Collapse
Affiliation(s)
- Anirban Paul
- Cold Spring Harbor Laboratory, Neuroscience Cold Spring Harbor, New York, NY, USA
| | | | | | | |
Collapse
|
49
|
IκB kinase/nuclear factor κB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. J Neurosci 2012; 32:5688-703. [PMID: 22514330 DOI: 10.1523/jneurosci.0111-12.2012] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations of learning and memory in mice with deregulated neuron-specific nuclear factor κB (NF-κB) activity support the idea that plastic changes of synaptic contacts may depend at least in part on IκB kinase (IKK)/NF-κB-related synapse-to-nucleus signaling. There is, however, little information on the molecular requirements and mechanisms regulating this IKK/NF-κB-dependent synapse development and remodeling. Here, we report that the NF-κB inducing IKK kinase complex is localized at the postsynaptic density (PSD) and activated under basal conditions in the adult mouse brain. Using different models of conditional genetic inactivation of IKK2 function in mouse principal neurons, we show that IKK/NF-κB signaling is critically involved in synapse formation and spine maturation in the adult brain. IKK/NF-κB blockade in the forebrain of mutant animals is associated with reduced levels of mature spines and postsynaptic proteins PSD95, SAP97, GluA1, AMPAR-mediated basal synaptic transmission and a spatial learning impairment. Synaptic deficits can be restored in adult animals within 1 week by IKK/NF-κB reactivation, indicating a highly dynamic IKK/NF-κB-dependent regulation process. We further identified the insulin-like growth factor 2 gene (Igf2) as a novel IKK/NF-κB target. Exogenous Igf2 was able to restore synapse density and promoted spine maturation in IKK/NF-κB signaling-deficient neurons within 24 h. This process depends on Igf2/Igf2R-mediated MEK/ERK activation. Our findings illustrate a fundamental role of IKK/NF-κB-Igf2-Igf2R signaling in synapse formation and maturation in adult mice, thus providing an intriguing link between the molecular actions of IKK/NF-κB in neurons and the memory enhancement factor Igf2.
Collapse
|
50
|
Sakowski SA, Feldman EL. Insulin-like growth factors in the peripheral nervous system. Endocrinol Metab Clin North Am 2012; 41:375-93, vii. [PMID: 22682636 DOI: 10.1016/j.ecl.2012.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factors (IGFs) play an integral role in development, growth, and survival. This article details the current understanding of the effects of IGFs in the peripheral nervous system (PNS) during health and disease, and introduces how the IGF system regulates PNS development and impacts growth and survival of PNS cells. Also discussed are implications of IGF signaling in neurodegeneration and the status and prospects of IGF therapies for PNS conditions. There is substantial support for the application of IGF therapies in the treatment of PNS injury and disease.
Collapse
Affiliation(s)
- Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, 109 Zina Pitcher Place, 4019 AAT-BSRB, Ann Arbor, MI 48109, USA
| | | |
Collapse
|