1
|
Cheng LS, Charng CC, Chen RH, Feng KL, Chiang AS, Lo CC, Lee TK. Hybrid neural networks in the mushroom body drive olfactory preference in Drosophila. SCIENCE ADVANCES 2025; 11:eadq9893. [PMID: 40446049 PMCID: PMC12124391 DOI: 10.1126/sciadv.adq9893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
In Drosophila melanogaster, olfactory encoding in the mushroom body (MB) involves thousands of Kenyon cells (KCs) processing inputs from hundreds of projection neurons (PNs). Recent data challenge the notion of random PN-to-KC connectivity, revealing preferential connections between food-related PNs and specific KCs. Our study further uncovers a broader picture-an L-shaped hybrid network, supported by spatial patterning: Food-related PNs diverge across KC classes, whereas pheromone-sensitive PNs converge on γ KCs. α/β KCs specialize in food odors, whereas γ KCs integrate diverse inputs. Such spatial arrangement extends further to the antennal lobe (AL) and lateral horn (LH), shaping a systematic olfactory landscape. Moreover, our functional validations align with computational predictions of KC odor encoding based on the hybrid connectivity, correlating PN-KC activity with behavioral preferences. In addition, our simulations showcase the network's augmented sensitivity and precise discrimination abilities, underscoring the computational benefits of this hybrid architecture in olfactory processing.
Collapse
Affiliation(s)
- Li-Shan Cheng
- Department of Physics, National Tsing Hua University, Hsinchu 300043, Taiwan
| | - Ching-Che Charng
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Huang Chen
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Lin Feng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ann-Shyn Chiang
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0526, USA
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Kuo Lee
- Department of Physics, National Tsing Hua University, Hsinchu 300043, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Cachero S, Gkantia M, Bates AS, Frechter S, Blackie L, McCarthy A, Sutcliffe B, Strano A, Aso Y, Jefferis GSXE. BAcTrace, a tool for retrograde tracing of neuronal circuits in Drosophila. Nat Methods 2020; 17:1254-1261. [PMID: 33139893 PMCID: PMC7610425 DOI: 10.1038/s41592-020-00989-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
Animal behavior is encoded in neuronal circuits in the brain. To elucidate the function of these circuits, it is necessary to identify, record from and manipulate networks of connected neurons. Here we present BAcTrace (Botulinum Activated Tracer), a genetically encoded, retro-grade, transsynaptic labelling system. BAcTrace is based on C. botulinum neurotoxin A, Botox, which we have engineered to travel retrogradely between neurons to activate an otherwise silent transcription factor. We validate BAcTrace at three neuronal connections in the Drosophila olfactory system. We show that BAcTrace-mediated labeling allows electrophysiological recordings of connected neurons. Finally, in a challenging circuit with highly divergent connections, BAcTrace correctly identifies 12 out of 16 connections, which were previously observed by electron microscopy.
Collapse
Affiliation(s)
- Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shahar Frechter
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Blackie
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Amy McCarthy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Ben Sutcliffe
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alessio Strano
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Cancer and Developmental Biology & Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | |
Collapse
|
4
|
Current techniques for high-resolution mapping of behavioral circuits in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:895-909. [DOI: 10.1007/s00359-015-1010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
5
|
Bressan JMA, Benz M, Oettler J, Heinze J, Hartenstein V, Sprecher SG. A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior. Front Neuroanat 2015; 8:166. [PMID: 25698935 PMCID: PMC4316776 DOI: 10.3389/fnana.2014.00166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/24/2014] [Indexed: 11/28/2022] Open
Abstract
A wide spectrum of occupied ecological niches and spectacular morphological adaptations make social insects a prime object for comparative neuroanatomical studies. Eusocial insects have evolved complex societies based on caste polyphenism. A diverse behavioral repertoire of morphologically distinct castes of the same species requires a high degree of plasticity in the central nervous system. We have analyzed the central brain neuropils and fiber tract systems of the worker of the ant Cardiocondylaobscurior, a model for the study of social traits. Our analysis is based on whole mount preparations of adult brains labeled with an antibody against Drosophila-Synapsin, which cross-reacts strongly with synapses in Cardiocondyla. Neuropil compartments stand out as domains with a certain texture and intensity of the anti-Synapsin signal. By contrast, fiber tracts, which are composed of bundles of axons accompanied by glia and are devoid of synapses, appear as channels or sheaths with low anti-Synapsin signal. We have generated a digital 3D atlas of the Cardiocondyla brain neuropil. The atlas provides a reference for future studies of brain polymorphisms in distinct castes, brain development or localization of neurotransmitter systems.
Collapse
Affiliation(s)
- Joris M A Bressan
- Department of Biology, Institute of Developmental and Cell Biology, University of Fribourg Fribourg, Switzerland
| | - Martin Benz
- Department of Biology, Institute of Developmental and Cell Biology, University of Fribourg Fribourg, Switzerland
| | - Jan Oettler
- Biologie I, Universität Regensburg Regensburg, Germany
| | - Jürgen Heinze
- Biologie I, Universität Regensburg Regensburg, Germany
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, CA, USA
| | - Simon G Sprecher
- Department of Biology, Institute of Developmental and Cell Biology, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
6
|
Thum AS, Leisibach B, Gendre N, Selcho M, Stocker RF. Diversity, variability, and suboesophageal connectivity of antennal lobe neurons in D. melanogaster larvae. J Comp Neurol 2012; 519:3415-32. [PMID: 21800296 DOI: 10.1002/cne.22713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Whereas the "vertical" elements of the insect olfactory pathway, the olfactory receptor neurons and the projection neurons, have been studied in great detail, local interneurons providing "horizontal" connections in the antennal lobe were ignored for a long time. Recent studies in adult Drosophila demonstrate diverse roles for these neurons in the integration of odor information, consistent with the identification of a large variety of anatomical and neurochemical subtypes. Here we focus on the larval olfactory circuit of Drosophila, which is much reduced in terms of cell numbers. We show that the horizontal connectivity in the larval antennal lobe differs largely from its adult counterpart. Only one of the five anatomical types of neurons we describe is restricted to the antennal lobe and therefore fits the definition of a local interneuron. Interestingly, the four remaining subtypes innervate both the antennal lobe and the suboesophageal ganglion. In the latter, they may overlap with primary gustatory terminals and with arborizations of hugin cells, which are involved in feeding control. This circuitry suggests special links between smell and taste, which may reflect the chemosensory constraints of a crawling and burrowing lifestyle. We also demonstrate that many of the neurons we describe exhibit highly variable trajectories and arborizations, especially in the suboesophageal ganglion. Together with reports from adult Drosophila, these data suggest that wiring variability may be another principle of insect brain organization, in parallel with stereotypy.
Collapse
Affiliation(s)
- A S Thum
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
7
|
Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. ADVANCES IN GENETICS 2009; 65:79-143. [DOI: 10.1016/s0065-2660(09)65003-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|