1
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
2
|
The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target. Cancers (Basel) 2022; 14:cancers14235986. [PMID: 36497468 PMCID: PMC9740655 DOI: 10.3390/cancers14235986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death 10 (PDCD10) was initially considered as a protein associated with apoptosis. However, recent studies showed that PDCD10 is actually an adaptor protein. By interacting with multiple molecules, PDCD10 participates in various physiological processes, such as cell survival, migration, cell differentiation, vesicle trafficking, cellular senescence, neurovascular development, and gonadogenesis. Moreover, over the past few decades, accumulating evidence has demonstrated that the aberrant expression or mutation of PDCD10 is extremely common in various pathological processes, especially in cancers. The dysfunction of PDCD10 has been strongly implicated in oncogenesis and tumor progression. However, the updated data seem to indicate that PDCD10 has a dual role (either pro- or anti-tumor effects) in various cancer types, depending on cell/tissue specificity with different cellular interactors. In this review, we aimed to summarize the knowledge of the dual role of PDCD10 in cancers with a special focus on its cellular function and potential molecular mechanism. With these efforts, we hoped to provide new insight into the future development and application of PDCD10 as a clinical therapeutic target in cancers.
Collapse
|
3
|
Tu T, Peng Z, Ren J, Zhang H. Cerebral Cavernous Malformation: Immune and Inflammatory Perspectives. Front Immunol 2022; 13:922281. [PMID: 35844490 PMCID: PMC9280619 DOI: 10.3389/fimmu.2022.922281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a type of vascular anomaly that arises due to the dyshomeostasis of brain capillary networks. In the past two decades, many advances have been made in this research field. Notably, as a more reasonable current view, the CCM lesions should be attributed to the results of a great number of additional events related to the homeostasis disorder of the endothelial cell. Indeed, one of the most fascinating concerns in the research field is the inflammatory perturbation in the immune microenvironment, which would affect the disease progression as well as the patients’ outcomes. In this work, we focused on this topic, and underlined the immune-related factors’ contribution to the CCM pathologic progression.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenghong Peng
- Health Management Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongqi Zhang,
| |
Collapse
|
4
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
6
|
Riolo G, Ricci C, Battistini S. Molecular Genetic Features of Cerebral Cavernous Malformations (CCM) Patients: An Overall View from Genes to Endothelial Cells. Cells 2021; 10:704. [PMID: 33810005 PMCID: PMC8005105 DOI: 10.3390/cells10030704] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that affect predominantly microvasculature in the brain and spinal cord. CCM can occur either in sporadic or familial form, characterized by autosomal dominant inheritance and development of multiple lesions throughout the patient's life. Three genes associated with CCM are known: CCM1/KRIT1 (krev interaction trapped 1), CCM2/MGC4607 (encoding a protein named malcavernin), and CCM3/PDCD10 (programmed cell death 10). All the mutations identified in these genes cause a loss of function and compromise the protein functions needed for maintaining the vascular barrier integrity. Loss of function of CCM proteins causes molecular disorganization and dysfunction of endothelial adherens junctions. In this review, we provide an overall vision of the CCM pathology, starting with the genetic bases of the disease, describing the role of the proteins, until we reach the cellular level. Thus, we summarize the genetics of CCM, providing a description of CCM genes and mutation features, provided an updated knowledge of the CCM protein structure and function, and discuss the molecular mechanisms through which CCM proteins may act within endothelial cells, particularly in endothelial barrier maintenance/regulation and in cellular signaling.
Collapse
Affiliation(s)
| | | | - Stefania Battistini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (C.R.)
| |
Collapse
|
7
|
Han G, Ma L, Qiao H, Han L, Wu Q, Li Q. A Novel CCM2 Missense Variant Caused Cerebral Cavernous Malformations in a Chinese Family. Front Neurosci 2021; 14:604350. [PMID: 33469417 PMCID: PMC7813800 DOI: 10.3389/fnins.2020.604350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common vascular malformations in the central nervous system. Familial CCMs (FCCMs) are autosomal dominant inherited disease with incomplete penetrance and variable symptoms. Mutations in the KRIT1, CCM2, and PDCD10 genes cause the development of FCCM. Approximately 476 mutations of three CCM-related genes have been reported, most of which were case reports, and lack of data in stable inheritance. In addition, only a small number of causative missense mutations had been identified in patients. Here, we reported that 8/20 members of a Chinese family were diagnosed with CCMs. By direct DNA sequencing, we found a novel variant c.331G > C (p.A111P) in exon 4 of the CCM2 gene, which was a heterozygous exonic variant, in 7/20 family members. We consider this variant to be causative of disease due to a weaken the protein-protein interaction between KRIT1 and CCM2. In addition, we also found the exon 13 deletion in KRIT1 coexisting with the CCM2 mutation in patient IV-2, and this was inherited from her father (patient III-1H). This study of a Chinese family with a large number of patients with CCMs and stable inheritance of a CCM2 mutation contributes to better understanding the spectrum of gene mutations in CCMs.
Collapse
Affiliation(s)
- Guoqing Han
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Li Ma
- Department of Preventive Dentistry, School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lin Han
- Running Gene Inc., Beijing, China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Qingguo Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
8
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
9
|
Abou-Fadel J, Qu Y, Gonzalez EM, Smith M, Zhang J. Emerging roles of CCM genes during tumorigenesis with potential application as novel biomarkers across major types of cancers. Oncol Rep 2020; 43:1945-1963. [PMID: 32186778 PMCID: PMC7160551 DOI: 10.3892/or.2020.7550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are microvascular anomalies in the brain that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs: cerebral cavernous malformations 1 [(CCM1) also termed Krev interaction trapped 1 (KRIT1)], cerebral cavernous malformation 2 [(CCM2) also termed MGC4607] and cerebral cavernous malformation 3 [(CCM3) also termed programmed cell death 10 (PDCD10)]. It has been demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) with which to modulate multiple signaling cascades. CCM proteins have been reported to play major roles in microvascular angiogenesis in human and animal models. However, CCM proteins are ubiquitously expressed in all major tissues, suggesting an unseen broader role of the CSC in biogenesis. Recent evidence suggests the possible involvement of the CSC complex during tumorigenesis; however, studies concerning this aspect are limited. This is the first report to systematically investigate the expression patterns of CCM proteins in major human tumors using real‑time quantitative PCR, RNA‑fluorescence in situ hybridization, immunohistochemistry and multicolor immunofluorescence imaging. Our data demonstrated that differential expression patterns of the CSC complex are correlated with certain types and grades of major human cancers, indicating the potential application of CCM genes as molecular biomarkers for clinical oncology. Our data strongly suggest that more efforts are needed to elucidate the role of the CSC complex in tumorigenesis, which may have enormous clinical potential for cancer diagnostic, prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Yanchun Qu
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Elias M. Gonzalez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
10
|
Yang L, Wu J, Zhang J. A Novel CCM2 Gene Mutation Associated With Cerebral Cavernous Malformation. Front Neurol 2020; 11:70. [PMID: 32117029 PMCID: PMC7020567 DOI: 10.3389/fneur.2020.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are the second most prevalent type of vascular malformation within the central nervous system. CCMs occur in two forms—sporadic and familial—the latter of which has an autosomal dominant mode of inheritance with incomplete penetrance and variable clinical expressivity. There are three genes considered to be associated with CCMs,—CCM1, which codes for KRIT1 protein; CCM2, which codes for MGC4607 protein; and CCM3, which codes for PDCD10 protein. To date, more than 74 gene mutations of CCM2 have been reported, and ~45% are deletion mutations. In this article, we disclose a novel CCM2 genetic variant (c.755delC, p.S252fs*40X) identified in a Chinese family to enrich the database of CCM2 genotypes.
Collapse
Affiliation(s)
- Lipeng Yang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jian Wu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Ziogas A, Maekawa T, Wiessner JR, Le TT, Sprott D, Troullinaki M, Neuwirth A, Anastasopoulou V, Grossklaus S, Chung KJ, Sperandio M, Chavakis T, Hajishengallis G, Alexaki VI. DHEA Inhibits Leukocyte Recruitment through Regulation of the Integrin Antagonist DEL-1. THE JOURNAL OF IMMUNOLOGY 2020; 204:1214-1224. [PMID: 31980574 DOI: 10.4049/jimmunol.1900746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Leukocytes are rapidly recruited to sites of inflammation via interactions with the vascular endothelium. The steroid hormone dehydroepiandrosterone (DHEA) exerts anti-inflammatory properties; however, the underlying mechanisms are poorly understood. In this study, we show that an anti-inflammatory mechanism of DHEA involves the regulation of developmental endothelial locus 1 (DEL-1) expression. DEL-1 is a secreted homeostatic factor that inhibits β2-integrin-dependent leukocyte adhesion, and the subsequent leukocyte recruitment and its expression is downregulated upon inflammation. Similarly, DHEA inhibited leukocyte adhesion to the endothelium in venules of the inflamed mouse cremaster muscle. Importantly, in a model of lung inflammation, DHEA limited neutrophil recruitment in a DEL-1-dependent manner. Mechanistically, DHEA counteracted the inhibitory effect of inflammation on DEL-1 expression. Indeed, whereas TNF reduced DEL-1 expression and secretion in endothelial cells by diminishing C/EBPβ binding to the DEL-1 gene promoter, DHEA counteracted the inhibitory effect of TNF via activation of tropomyosin receptor kinase A (TRKA) and downstream PI3K/AKT signaling that restored C/EBPβ binding to the DEL-1 promoter. In conclusion, DHEA restrains neutrophil recruitment by reversing inflammation-induced downregulation of DEL-1 expression. Therefore, the anti-inflammatory DHEA/DEL-1 axis could be harnessed therapeutically in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Tomoki Maekawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 951-8514 Niigata, Japan
| | - Johannes R Wiessner
- Walter Brendel Centre of Experimental Medicine and Institute of Cardiovascular Physiology and Pathophysiology, BioMedical Centre, Ludwig Maximilians University of Munich, 81377 Planegg-Martinsried, Germany; and
| | - Thi Trang Le
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Sprott
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Troullinaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ales Neuwirth
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vasiliki Anastasopoulou
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sylvia Grossklaus
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine and Institute of Cardiovascular Physiology and Pathophysiology, BioMedical Centre, Ludwig Maximilians University of Munich, 81377 Planegg-Martinsried, Germany; and
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| |
Collapse
|
12
|
Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation. Int J Mol Sci 2020; 21:ijms21020675. [PMID: 31968585 PMCID: PMC7013531 DOI: 10.3390/ijms21020675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease characterized by mulberry shaped clusters of dilated microvessels, primarily in the central nervous system. Such lesions can cause seizures, headaches, and stroke from brain bleeding. Loss-of-function germline and somatic mutations of a group of genes, called CCM genes, have been attributed to disease pathogenesis. In this review, we discuss the impact of CCM gene encoded proteins on cellular signaling, barrier function of endothelium and epithelium, and their contribution to CCM and potentially other diseases.
Collapse
|
13
|
Scimone C, Donato L, Katsarou Z, Bostantjopoulou S, D'Angelo R, Sidoti A. Two Novel KRIT1 and CCM2 Mutations in Patients Affected by Cerebral Cavernous Malformations: New Information on CCM2 Penetrance. Front Neurol 2018; 9:953. [PMID: 30487773 PMCID: PMC6246743 DOI: 10.3389/fneur.2018.00953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Wide comprehension of genetic features of cerebral cavernous malformations (CCM) represents the starting point to better manage patients and risk rating in relatives. The causative mutations spectrum is constantly growing. KRIT1, CCM2, and PDCD10 are the three loci to date linked to familial CCM development, although germline mutations have also been detected in patients affected by sporadic forms. In this context, the main challenge is to draw up criteria to formulate genotype-phenotype correlations. Clearly, genetic factors determining incomplete penetrance of CCM need to be identified. Here, we report two novel intronic variants probably affecting splicing. Molecular screening of CCM genes was performed on DNA purified by peripheral blood. Coding exons and intron-exon boundaries were sequenced by the Sanger method. The first was detected in a sporadic patient and involves KRIT1. The second affects CCM2 and it is harbored by a woman with familial CCM. Interestingly, molecular analysis extended to both healthy and ill relatives allowed to estimate, for the first time, a penetrance for CCM2 lower than 100%, as to date reported. Moreover, heterogeneity of clinical manifestations among those affected carrying the same genotype further confirms involvement of modifier factors in CCM development.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoe Katsarou
- Department of Neurology, Hippokration General Hospital, Thessaloniki, Greece
| | | | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| |
Collapse
|
14
|
Abstract
Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
15
|
Chen S, Fang Y, Xu S, Reis C, Zhang J. Mammalian Sterile20-like Kinases: Signalings and Roles in Central Nervous System. Aging Dis 2018; 9:537-552. [PMID: 29896440 PMCID: PMC5988607 DOI: 10.14336/ad.2017.0702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022] Open
Abstract
Mammalian Sterile20-like (MST) kinases are located upstream in the mitogen-activated protein kinase pathway, and play an important role in cell proliferation, differentiation, renewal, polarization and migration. Generally, five MST kinases exist in mammalian signal transduction pathways, including MST1, MST2, MST3, MST4 and YSK1. The central nervous system (CNS) is a sophisticated entity that takes charge of information reception, integration and response. Recently, accumulating evidence proposes that MST kinases are critical in the development of disease in different systems involving the CNS. In this review, we summarized the signal transduction pathways and interacting proteins of MST kinases. The potential biological function of each MST kinase and the commonly reported MST-related diseases in the neural system are also reviewed. Further investigation of MST kinases and their interaction with CNS diseases would provide the medical community with new therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Sheng Chen
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenbin Xu
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cesar Reis
- 2Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA.,3Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,4Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Feinberg K, Kolaj A, Wu C, Grinshtein N, Krieger JR, Moran MF, Rubin LL, Miller FD, Kaplan DR. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. J Cell Biol 2017; 216:3655-3675. [PMID: 28877995 PMCID: PMC5674898 DOI: 10.1083/jcb.201705085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
The pan-kinase inhibitor foretinib is identified as a potent suppressor of sympathetic, sensory, and motor neuron axon degeneration, acting in part by inhibiting the activity of the unliganded TrkA/nerve growth factor receptor and by preserving mitochondria in die-back and Wallerian degeneration models. Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaida Kolaj
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chen Wu
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Natalie Grinshtein
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan R Krieger
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations. J Mol Neurosci 2016; 61:189-198. [DOI: 10.1007/s12031-016-0863-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
|
18
|
Unravelling the Mechanism of TrkA-Induced Cell Death by Macropinocytosis in Medulloblastoma Daoy Cells. Mol Cell Biol 2016; 36:2596-611. [PMID: 27503856 DOI: 10.1128/mcb.00255-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022] Open
Abstract
Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser(185) by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die.
Collapse
|
19
|
Huang WQ, Lu CX, Zhang Y, Yi KH, Cai LL, Li ML, Wang H, Lin Q, Tzeng CM. A Novel CCM2 Gene Mutation Associated with Familial Cerebral Cavernous Malformation. Front Aging Neurosci 2016; 8:220. [PMID: 27708576 PMCID: PMC5030299 DOI: 10.3389/fnagi.2016.00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
Background: Cerebral cavernous malformations (CCMs) are common vascular malformations that predominantly arise in the central nervous system and are mainly characterized by enlarged vascular cavities without intervening brain parenchyma. Familial CCMs (FCCMs) is inherited in an autosomal dominant pattern with incomplete penetrance and variable symptoms. Methods: Mutations of three pathogenic genes, CCM1, CCM2, and CCM3, were investigated by direct DNA sequencing in a Chinese family with multiple CCM lesions. Results: Four heterozygous variants in the CCM2 gene, including one deletion (c.95delC), a missense mutation (c.358G>A, p.V120I), one silent mutation (c.915G>A, p.T305T), and a substitution (c. *1452 T>C), were identified in the subjects with multiple CCM lesions, but not in a healthy sibling. Among these variants, the c.95delC deletion is a novel mutation which is expected to cause a premature termination codon. It is predicted to produce a truncated CCM2 protein lacking the PTB and C-terminal domains, thus disrupting the molecular functions of CCM2. Conclusions: The novel truncating mutation in the CCM2 gene, c.95delC, may be responsible for multiple CCM lesions in a part of FCCM. In addition, it may represent a potential genetic biomarker for early diagnosis of FCCM.
Collapse
Affiliation(s)
- Wen-Qing Huang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen, China; Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China
| | - Cong-Xia Lu
- Department of Neurology, The First Affiliated Hospital of Xiamen University Xiamen, China
| | - Ya Zhang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen, China; Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China
| | - Ke-Hui Yi
- Department of Neurology, The First Affiliated Hospital of Xiamen UniversityXiamen, China; The First Clinical College of Fujian Medical UniversityFuzhou, China
| | - Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen, China; Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China
| | - Ming-Li Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen, China; Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China
| | - Han Wang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen, China; Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China
| | - Qing Lin
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen, China; Department of Neurology, The First Affiliated Hospital of Xiamen UniversityXiamen, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen UniversityXiamen, China; Key Laboratory for Cancer T-Cell Theranostics and Clinical TranslationXiamen, China; INNOVA Cell: TDx/Clinics and TRANSLATE Health GroupYangzhou, China
| |
Collapse
|
20
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
21
|
Raba M, Palgi J, Lehtivaara M, Arumäe U. Microarray Analysis Reveals Increased Transcriptional Repression and Reduced Metabolic Activity but Not Major Changes in the Core Apoptotic Machinery during Maturation of Sympathetic Neurons. Front Cell Neurosci 2016; 10:66. [PMID: 27013977 PMCID: PMC4792887 DOI: 10.3389/fncel.2016.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/01/2016] [Indexed: 01/19/2023] Open
Abstract
Postnatal maturation of the neurons whose main phenotype and basic synaptic contacts are already established includes neuronal growth, refinement of synaptic contacts, final steps of differentiation, programmed cell death period (PCD) etc. In the sympathetic neurons, postnatal maturation includes permanent end of the PCD that occurs with the same time schedule in vivo and in vitro suggesting that the process could be genetically determined. Also many other changes in the neuronal maturation could be permanent and thus based on stable changes in the genome expression. However, postnatal maturation of the neurons is poorly studied. Here we compared the gene expression profiles of immature and mature sympathetic neurons using Affymetrix microarray assay. We found 1310 significantly up-regulated and 1151 significantly down-regulated genes in the mature neurons. Gene ontology analysis reveals up-regulation of genes related to neuronal differentiation, chromatin and epigenetic changes, extracellular factors and their receptors, and cell adhesion, whereas many down-regulated genes were related to metabolic and biosynthetic processes. We show that termination of PCD is not related to major changes in the expression of classical genes for apoptosis or cell survival. Our dataset is deposited to the ArrayExpress database and is a valuable source to select candidate genes in the studies of neuronal maturation. As an example, we studied the changes in the expression of selected genes Igf2bp3, Coro1A, Zfp57, Dcx, and Apaf1 in the young and mature sympathetic ganglia by quantitative PCR and show that these were strongly downregulated in the mature ganglia.
Collapse
Affiliation(s)
- Mikk Raba
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Jaan Palgi
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Maria Lehtivaara
- Biomedicum Functional Genomics Unit, Biomedicum Helsinki, University of Helsinki Helsinki, Finland
| | - Urmas Arumäe
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia; Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| |
Collapse
|
22
|
Kim H, Pawlikowska L, Su H, Young WL. Genetics and Vascular Biology of Angiogenesis and Vascular Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Overexpression of NTRK1 Promotes Differentiation of Neural Stem Cells into Cholinergic Neurons. BIOMED RESEARCH INTERNATIONAL 2015; 2015:857202. [PMID: 26509167 PMCID: PMC4609807 DOI: 10.1155/2015/857202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022]
Abstract
Neurotrophic tyrosine kinase type 1 (NTRK1) plays critical roles in proliferation, differentiation, and survival of cholinergic neurons; however, it remains unknown whether enhanced expression of NTRK1 in neural stem cells (NSCs) can promote their differentiation into mature neurons. In this study, a plasmid encoding the rat NTRK1 gene was constructed and transfected into C17.2 mouse neural stem cells (NSCs). NTRK1 overexpression in C17.2 cells was confirmed by western blot. The NSCs overexpressing NTRK1 and the C17.2 NSCs transfected by an empty plasmid vector were treated with or without 100 ng/mL nerve growth factor (NGF) for 7 days. Expression of the cholinergic cell marker, choline acetyltransferase (ChAT), was detected by florescent immunocytochemistry (ICC). In the presence of NGF induction, the NSCs overexpressing NTRK1 differentiated into ChAT-immunopositive cells at 3-fold higher than the NSCs transfected by the plasmid vector (26% versus 9%, P < 0.05). The data suggest that elevated NTRK1 expression increases differentiation of NSCs into cholinergic neurons under stimulation of NGF. The approach also represents an efficient strategy for generation of cholinergic neurons.
Collapse
|
24
|
Wang X, Hou Y, Deng K, Zhang Y, Wang DC, Ding J. Structural Insights into the Molecular Recognition between Cerebral Cavernous Malformation 2 and Mitogen-Activated Protein Kinase Kinase Kinase 3. Structure 2015; 23:1087-96. [PMID: 25982527 DOI: 10.1016/j.str.2015.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022]
Abstract
Cerebral cavernous malformation 2 (CCM2) functions as an adaptor protein implicated in various biological processes. By interacting with the mitogen-activated protein kinase MEKK3, CCM2 either mediates the activation of MEKK3 signaling in response to osmotic stress or negatively regulates MEKK3 signaling, which is important for normal cardiovascular development. However, the molecular basis governing CCM2-MEKK3 interaction is largely unknown. Here we report the crystal structure of the CCM2 C-terminal part (CCM2ct) containing both the five-helix domain (CCM2cts) and the following C-terminal tail. The end of the C-terminal tail forms an isolated helix, which interacts intramolecularly with CCM2cts. By biochemical studies we identified the N-terminal amphiphilic helix of MEKK3 (MEKK3-nhelix) as the essential structural element for CCM2ct binding. We further determined the crystal structure of CCM2cts-MEKK3-nhelix complex, in which MEKK3-nhelix binds to the same site of CCM2cts for CCM2ct intramolecular interaction. These findings build a structural framework for understanding CCM2ct-MEKK3 molecular recognition.
Collapse
Affiliation(s)
- Xiaoyan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Hubei 442000, People's Republic of China
| | - Yanjie Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Kai Deng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Hubei 442000, People's Republic of China
| | - Ying Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
25
|
PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 2014; 38:229-36; discussion 236-7. [DOI: 10.1007/s10143-014-0597-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/08/2014] [Accepted: 11/01/2014] [Indexed: 01/09/2023]
|
26
|
Götz R, Sendtner M. Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells. PLoS One 2014; 9:e100944. [PMID: 24959744 PMCID: PMC4069166 DOI: 10.1371/journal.pone.0100944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/01/2014] [Indexed: 12/31/2022] Open
Abstract
TrkB mediates the effects of brain-derived neurotrophic factor (BDNF) in neuronal and nonnneuronal cells. Based on recent reports that TrkB can also be transactivated through epidermal growth-factor receptor (EGFR) signaling and thus regulates migration of early neurons, we investigated the role of TrkB in migration of lung tumor cells. Early metastasis remains a major challenge in the clinical management of non-small cell lung cancer (NSCLC). TrkB receptor signaling is associated with metastasis and poor patient prognosis in NSCLC. Expression of this receptor in A549 cells and in another adenocarcinoma cell line, NCI-H441, promoted enhanced migratory capacity in wound healing assays in the presence of the TrkB ligand BDNF. Furthermore, TrkB expression in A549 cells potentiated the stimulatory effect of EGF in wound healing and in Boyden chamber migration experiments. Consistent with a potential loss of cell polarity upon TrkB expression, cell dispersal and de-clustering was induced in A549 cells independently of exogeneous BDNF. Morphological transformation involved extensive cytoskeletal changes, reduced E-cadherin expression and suppression of E-cadherin expression on the cell surface in TrkB expressing tumor cells. This function depended on MEK and Akt kinase activity but was independent of Src. These data indicate that TrkB expression in lung adenoma cells is an early step in tumor cell dissemination, and thus could represent a target for therapy development.
Collapse
Affiliation(s)
- Rudolf Götz
- Institute for Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci 2014; 127:701-7. [PMID: 24481819 DOI: 10.1242/jcs.138388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.
Collapse
Affiliation(s)
- Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
28
|
Mondéjar R, Solano F, Rubio R, Delgado M, Pérez-Sempere Á, González-Meneses A, Vendrell T, Izquierdo G, Martinez-Mir A, Lucas M. Mutation prevalence of cerebral cavernous malformation genes in Spanish patients. PLoS One 2014; 9:e86286. [PMID: 24466005 PMCID: PMC3900513 DOI: 10.1371/journal.pone.0086286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022] Open
Abstract
Objective To study the molecular genetic and clinical features of cerebral cavernous malformations (CCM) in a cohort of Spanish patients. Methods We analyzed the CCM1, CCM2, and CCM3 genes by MLPA and direct sequencing of exons and intronic boundaries in 94 familial forms and 41 sporadic cases of CCM patients of Spanish extraction. When available, RNA studies were performed seeking for alternative or cryptic splicing. Results A total of 26 pathogenic mutations, 22 of which predict truncated proteins, were identified in 29 familial forms and in three sporadic cases. The repertoire includes six novel non-sense and frameshift mutations in CCM1 and CCM3. We also found four missense mutations, one of them located at the third NPXY motif of CCM1 and another one that leads to cryptic splicing of CCM1 exon 6. We found four genomic deletions with the loss of the whole CCM2 gene in one patient and a partial loss of CCM1and CCM2 genes in three other patients. Four families had mutations in CCM3. The results include a high frequency of intronic variants, although most of them localize out of consensus splicing sequences. The main symptoms associated to clinical debut consisted of cerebral haemorrhage, migraines and epileptic seizures. The rare co-occurrence of CCM with Noonan and Chiari syndromes and delayed menarche is reported. Conclusions Analysis of CCM genes by sequencing and MLPA has detected mutations in almost 35% of a Spanish cohort (36% of familial cases and 10% of sporadic patients). The results include 13 new mutations of CCM genes and the main clinical symptoms that deserves consideration in molecular diagnosis and genetic counselling of cerebral cavernous malformations.
Collapse
Affiliation(s)
- Rufino Mondéjar
- Servicio de Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Sevilla, Spain
| | - Francisca Solano
- Servicio de Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Sevilla, Spain
| | - Rocío Rubio
- Servicio de Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Sevilla, Spain
| | - Mercedes Delgado
- Servicio de Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Sevilla, Spain
| | | | | | - Teresa Vendrell
- Unidad de Genética, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Guillermo Izquierdo
- Servicio de Neurología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Sevilla, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miguel Lucas
- Servicio de Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Sevilla, Spain
- * E-mail:
| |
Collapse
|
29
|
Ceni C, Unsain N, Zeinieh MP, Barker PA. Neurotrophins in the regulation of cellular survival and death. Handb Exp Pharmacol 2014; 220:193-221. [PMID: 24668474 DOI: 10.1007/978-3-642-45106-5_8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neurotrophins play crucial roles regulating survival and apoptosis in the developing and injured nervous system. The four neurotrophins exert profound and crucial survival effects on developing peripheral neurons, and their expression and action is intimately tied to successful innervation of peripheral targets. In the central nervous system, they are dispensable for neuronal survival during development but support neuronal survival after lesion or other forms of injury. Neurotrophins also regulate apoptosis of both peripheral and central neurons, and we now recognize that there are regulatory advantages to having the same molecules regulate life and death decisions. This chapter examines the biological contexts in which these events take place and highlights the specific ligands, receptors, and signaling mechanisms that allow them to occur.
Collapse
Affiliation(s)
- Claire Ceni
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada, H3A 2B4
| | | | | | | |
Collapse
|
30
|
Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 2013; 71:1881-92. [PMID: 24287896 DOI: 10.1007/s00018-013-1532-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.
Collapse
Affiliation(s)
- Oriana S Fisher
- Department of Pharmacology, Yale University School of Medicine, SHM B-316A, 333 Cedar Street, New Haven, CT, 06520, USA
| | | |
Collapse
|
31
|
Faure G, Revy P, Schertzer M, Londono-Vallejo A, Callebaut I. The C-terminal extension of human RTEL1, mutated in Hoyeraal-Hreidarsson syndrome, contains harmonin-N-like domains. Proteins 2013; 82:897-903. [PMID: 24130156 DOI: 10.1002/prot.24438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/13/2013] [Accepted: 09/26/2013] [Indexed: 12/28/2022]
Abstract
Several studies have recently shown that germline mutations in RTEL1, an essential DNA helicase involved in telomere regulation and DNA repair, cause Hoyeraal-Hreidarsson syndrome (HHS), a severe form of dyskeratosis congenita. Using original new softwares, facilitating the delineation of the different domains of the protein and the identification of remote relationships for orphan domains, we outline here that the C-terminal extension of RTEL1, downstream of its catalytic domain and including several HHS-associated mutations, contains a yet unidentified tandem of harmonin-N-like domains, which may serve as a hub for partner interaction. This finding highlights the potential critical role of this region for the function of RTEL1 and gives insights into the impact that the identified mutations would have on the structure and function of these domains.
Collapse
Affiliation(s)
- Guilhem Faure
- CNRS, UPMC University Paris 6, IMPMC, UMR7590-IUC, F-75005, Paris, France
| | | | | | | | | |
Collapse
|
32
|
SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 2013; 454:13-30. [PMID: 23889253 DOI: 10.1042/bj20130219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly cerebral cavernous malformations.
Collapse
|
33
|
Sporadic cerebral cavernous malformations: report of further mutations of CCM genes in 40 Italian patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:459253. [PMID: 24058906 PMCID: PMC3766605 DOI: 10.1155/2013/459253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 11/20/2022]
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions characterized by abnormally enlarged capillary cavities, affecting the central nervous system. CCMs can occur sporadically or as a familial autosomal dominant condition with incomplete penetrance and variable clinical expression attributable to mutations in three different genes: CCM1 (K-Rev interaction trapped 1 (KRIT1)), CCM2 (MGC4607), and CCM3 (PDCD10). CCMs occur as a single or multiple malformations that can lead to seizures, focal neurological deficits, hemorrhagic stroke, and headache. However, patients are frequently asymptomatic. In our previous mutation screening, performed in a cohort of 95 Italian patients, both sporadic and familial, we have identified several mutations in CCM genes, three of which in three distinct sporadic patients. In this study, representing further molecular screening of the three CCM genes, in a south Italian cohort of CCM patients enrolled by us in the last three years, we report the identification of other four new mutations in 40 sporadic patients with either single or multiple CCM.
Collapse
|
34
|
Fisher OS, Zhang R, Li X, Murphy JW, Demeler B, Boggon TJ. Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett 2012; 587:272-7. [PMID: 23266514 DOI: 10.1016/j.febslet.2012.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/01/2022]
Abstract
Cerebral cavernous malformations (CCM) are neurovascular dysplasias affecting up to 0.5% of the population. Mutations in the CCM2 gene are associated with acquisition of CCM. We identify a previously uncharacterized domain at the C-terminus of CCM2 and determine its 1.9Å resolution crystal structure. Because this domain is structurally homologous to the N-terminal domain of harmonin, we name it the CCM2 harmonin-homology domain or HHD. CCM2 HHD is observed in two conformations, and we employ analytical ultracentrifugation to test its oligomerization. Additionally, CCM2 HHD contains an unusually long 13-residue 3(10) helix. This study provides the first structural characterization of CCM2.
Collapse
Affiliation(s)
- Oriana S Fisher
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
35
|
Costa B, Kean MJ, Ast V, Knight JDR, Mett A, Levy Z, Ceccarelli DF, Badillo BG, Eils R, König R, Gingras AC, Fainzilber M. STK25 protein mediates TrkA and CCM2 protein-dependent death in pediatric tumor cells of neural origin. J Biol Chem 2012; 287:29285-9. [PMID: 22782892 DOI: 10.1074/jbc.c112.345397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TrkA receptor tyrosine kinase induces death in medulloblastoma cells via an interaction with the cerebral cavernous malformation 2 (CCM2) protein. We used affinity proteomics to identify the germinal center kinase class III (GCKIII) kinases STK24 and STK25 as novel CCM2 interactors. Down-modulation of STK25, but not STK24, rescued medulloblastoma cells from NGF-induced TrkA-dependent cell death, suggesting that STK25 is part of the death-signaling pathway initiated by TrkA and CCM2. CCM2 can be phosphorylated by STK25, and the kinase activity of STK25 is required for death signaling. Finally, STK25 expression in tumors is correlated with positive prognosis in neuroblastoma patients. These findings delineate a death-signaling pathway downstream of neurotrophic receptor tyrosine kinases that may provide targets for therapeutic intervention in pediatric tumors of neural origin.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang X, Ding J, Wang D. Crystallization and preliminary X-ray analysis of the C-terminal domain of CCM2, part of a novel adaptor protein involved in cerebral cavernous malformations. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:683-6. [PMID: 22684070 PMCID: PMC3370910 DOI: 10.1107/s1744309112016181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/13/2012] [Indexed: 11/11/2022]
Abstract
Cerebral cavernous malformation 2 (CCM2) is a novel two-domain adaptor protein which participates in multiple cellular signalling pathways. Loss-of-function mutations in the gene encoding CCM2 are the cause of common human vascular lesions called cerebral cavernous malformations. Here, the purification, crystallization and preliminary X-ray crystallographic studies of the C-terminal domain of CCM2 (CCM2-Ct) are reported. Diffraction data were collected from native and selenomethionine-substituted crystals of CCM2-Ct to resolutions of 2.9 and 2.7 Å, respectively. Both crystals belonged to space group I4(1)22 with similar unit-cell parameters. The native crystals had unit-cell parameters a = b = 113.29, c = 101.62 Å.
Collapse
Affiliation(s)
- Xiaoyan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Dacheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
37
|
Lavi-Itzkovitz A, Tcherpakov M, Levy Z, Itzkovitz S, Muscatelli F, Fainzilber M. Functional consequences of necdin nucleocytoplasmic localization. PLoS One 2012; 7:e33786. [PMID: 22442722 PMCID: PMC3307762 DOI: 10.1371/journal.pone.0033786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/19/2012] [Indexed: 02/02/2023] Open
Abstract
Background Necdin, a MAGE family protein expressed primarily in the nervous system, has been shown to interact with both nuclear and cytoplasmic proteins, but the mechanism of its nucleocytoplasmic transport are unknown. Methodology/Principal Findings We carried out a large-scale interaction screen using necdin as a bait in the yeast RRS system, and found a wide range of potential interactors with different subcellular localizations, including over 60 new candidates for direct binding to necdin. Integration of these interactions into a comprehensive network revealed a number of coherent interaction modules, including a cytoplasmic module connecting to necdin through huntingtin-associated protein 1 (Hap1), dynactin and hip-1 protein interactor (Hippi); a nuclear P53 and Creb-binding-protein (Crebbp) module, connecting through Crebbp and WW domain-containing transcription regulator protein 1 (Wwtr1); and a nucleocytoplasmic transport module, connecting through transportins 1 and 2. We validated the necdin-transportin1 interaction and characterized a sequence motif in necdin that modulates karyopherin interaction. Surprisingly, a D234P necdin mutant showed enhanced binding to both transportin1 and importin β1. Finally, exclusion of necdin from the nucleus triggered extensive cell death. Conclusions/Significance These data suggest that necdin has multiple roles within protein complexes in different subcellular compartments, and indicate that it can utilize multiple karyopherin-dependent pathways to modulate its localization.
Collapse
Affiliation(s)
- Anat Lavi-Itzkovitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Marianna Tcherpakov
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Zehava Levy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Francoise Muscatelli
- Institut de Neurobiologie de la Méditerranée, INSERM U901, Parc Scientifique de Luminy BP 13, Marseille, France
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
38
|
Garcia-Rudaz C, Dorfman M, Nagalla S, Svechnikov K, Söder O, Ojeda SR, Dissen GA. Excessive ovarian production of nerve growth factor elicits granulosa cell apoptosis by setting in motion a tumor necrosis factor α/stathmin-mediated death signaling pathway. Reproduction 2011; 142:319-31. [PMID: 21646391 DOI: 10.1530/rep-11-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excessive nerve growth factor (NGF) production by the ovary, achieved via a transgenic approach, results in arrested antral follicle growth, reduced ovulatory capacity, and a predisposition to cyst formation in response to mildly elevated LH levels. Two salient features in these mutant mice (termed 17NF) are an elevated production of 17α-hydroxyprogesterone (17-OHP(4)), testosterone, and estradiol (E(2)) in response to gonadotropins, and an increased frequency of granulosa cell (GC) apoptosis. In this study, we show that the increase in steroidal response is associated with enhanced expression of Cyp17a1, Hsd17b, and Cyp19a1, which encode the enzymes catalyzing the synthesis of 17-OHP(4), testosterone, and E(2) respectively. Using a proteomic approach, we identified stathmin (STMN1), as a protein that is overproduced in 17NF ovaries. In its phosphorylated state, STMN1 mediates a cell death signal initiated by tumor necrosis factor α (TNF). STMN1 is expressed in GCs and excessive NGF increases its abundance as well as that of its forms phosphorylated at serine (Ser) 16, 25, and 38. TNF synthesis is also increased in 17NF ovaries, and this change is abolished by blocking neurotrophic tyrosine kinase receptors. Inhibiting TNF actions in vivo by administering a soluble TNF receptor prevented the increase in total and phosphorylated STMN1 production, as well as GC apoptosis in NGF-overproducing ovaries. These results indicate that an excess of NGF in the ovary promotes steroidogenesis by enhancing the expression of enzyme genes involved in 17-OHP(4), testosterone, and E(2) synthesis, and causes GC apoptosis by activating a TNF/ STMN1-mediated cell death pathway.
Collapse
Affiliation(s)
- Cecilia Garcia-Rudaz
- Division of Neuroscience, Oregon National Primate Research Center-Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci U S A 2011; 108:3737-42. [PMID: 21321212 DOI: 10.1073/pnas.1012617108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Communication between neural cells and the vasculature is integral to the proper development and later function of the central nervous system. A mechanistic understanding of the interactions between components of the neurovascular unit has implications for various disorders, including cerebral cavernous malformations (CCMs) in which focal vascular lesions form throughout the central nervous system. Loss of function mutations in three genes with proven endothelial cell autonomous roles, CCM1/krev1 interaction trapped gene 1, CCM2, and CCM3/programmed cell death 10, cause familial CCM. By using neural specific conditional mouse mutants, we show that Ccm3 has both neural cell autonomous and nonautonomous functions. Gfap- or Emx1-Cre-mediated Ccm3 neural deletion leads to increased proliferation, increased survival, and activation of astrocytes through cell autonomous mechanisms involving activated Akt signaling. In addition, loss of neural CCM3 results in a vascular phenotype characterized by diffusely dilated and simplified cerebral vasculature along with formation of multiple vascular lesions that closely resemble human cavernomas through cell nonautonomous mechanisms. RNA sequencing of the vascular lesions shows abundant expression of molecules involved in cytoskeletal remodeling, including protein kinase A and Rho-GTPase signaling. Our findings implicate neural cells in the pathogenesis of CCMs, showing the importance of this pathway in neural/vascular interactions within the neurovascular unit.
Collapse
|
40
|
Nakamura K, Tan F, Li Z, Thiele CJ. NGF activation of TrkA induces vascular endothelial growth factor expression via induction of hypoxia-inducible factor-1α. Mol Cell Neurosci 2011; 46:498-506. [PMID: 21145972 PMCID: PMC3044333 DOI: 10.1016/j.mcn.2010.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 11/03/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022] Open
Abstract
Communication between the vasculature and nervous system is important during embryogenesis but the molecular mechanisms mediating this are ill-defined. We evaluated the molecular mechanisms by which Nerve Growth Factor (NGF) and Brain-derived neurotrophic factor (BDNF) regulate VEGF production. NGF activation of TrkA causes a marked increase in VEGF secretion by neuronal cells. The NGF induced increase in VEGF is accompanied by an increase in HIF-1α. Pharmacologic inhibitors of the Trk tyrosine kinase, PI-3 kinase and mTOR paths prevent NGF stimulated increases in HIF-1α and VEGF. NGF induced increase in VEGF transcription is dependent on a hypoxia response element (HRE) in the VEGF promoter. Mutation of the HRE or siRNA mediated silencing of HIF-1α expression blocks NGF induced increases in VEGF transcription. In primary cultures of TrkA expressing neurons from dorsal root ganglion, NGF induces VEGF expression that is accompanied by increases in HIF-1α but not HIF-2α expression. In CGN neurons, BDNF induces VEGF that is dependent on induction of HIF-1α. Our study indicates that neurotrophin activation of Trk stimulates an increase in VEGF transcription that is mediated by induction of HIF-1α.
Collapse
Affiliation(s)
- Katsuya Nakamura
- Cell & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
41
|
Iraci N, Diolaiti D, Papa A, Porro A, Valli E, Gherardi S, Herold S, Eilers M, Bernardoni R, Della Valle G, Perini G. A SP1/MIZ1/MYCN repression complex recruits HDAC1 at the TRKA and p75NTR promoters and affects neuroblastoma malignancy by inhibiting the cell response to NGF. Cancer Res 2010; 71:404-12. [PMID: 21123453 DOI: 10.1158/0008-5472.can-10-2627] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.
Collapse
Affiliation(s)
- Nunzio Iraci
- University of Bologna, Department of Biology, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin C, Meng S, Zhu T, Wang X. PDCD10/CCM3 acts downstream of {gamma}-protocadherins to regulate neuronal survival. J Biol Chem 2010; 285:41675-85. [PMID: 21041308 DOI: 10.1074/jbc.m110.179895] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
γ-Protocadherins (PCDH-γ) regulate neuronal survival in the vertebrate central nervous system. The molecular mechanisms of how PCDH-γ mediates this function are still not understood. In this study, we show that through their common cytoplasmic domain, different PCDH-γ isoforms interact with an intracellular adaptor protein named PDCD10 (programmed cell death 10). PDCD10 is also known as CCM3, a causative genetic defect for cerebral cavernous malformations in humans. Using RNAi-mediated knockdown, we demonstrate that PDCD10 is required for the occurrence of apoptosis upon PCDH-γ depletion in developing chicken spinal neurons. Moreover, overexpression of PDCD10 is sufficient to induce neuronal apoptosis. Taken together, our data reveal a novel function for PDCD10/CCM3, acting as a critical regulator of neuronal survival during development.
Collapse
Affiliation(s)
- Chengyi Lin
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
43
|
Jung EJ, Kim CW. Caveolin-1 inhibits TrkA-induced cell death by influencing on TrkA modification associated with tyrosine-490 phosphorylation. Biochem Biophys Res Commun 2010; 402:736-41. [PMID: 20977883 DOI: 10.1016/j.bbrc.2010.10.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 11/29/2022]
Abstract
Caveolin-1, a main structural protein constituent of caveolae, plays an important role in the signal transduction, endocytosis, and cholesterol transport. In addition, caveolin-1 has conflictive role in the regulation of cell survival and death depending on intracellular signaling pathways. The receptor tyrosine kinase TrkA has been known to interact with caveolin-1, and exploits multiple functions such as cell survival, death and differentiation. In this report, we investigated how TrkA-induced cell death signaling is regulated by caveolin-1 in both TrkA and caveolin-1 overexpressing stable U2OS cells. Here we show that TrkA co-localizes with caveolin-1 mostly as a large aggresome around nucleus by confocal immunofluorescence microscopy. Interestingly, TrkA-mediated Bak cleavage was suppressed by caveolin-1, indicating an inhibition of TrkA-induced cell death signaling by caveolin-1. Moreover, caveolin-1 altered TrkA modification including tyrosine-490 phosphorylation and unidentified cleavage(s), resulting in the inhibition of TrkA-induced apoptotic cell death. Our results suggest that caveolin-1 could suppress TrkA-mediated pleiotypic effects by altering TrkA modification via functional interaction.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Gyeongsang National University, School of Medicine, Jinju, South Korea
| | | |
Collapse
|
44
|
Zhu Y, Wu Q, Xu JF, Miller D, Sandalcioglu IE, Zhang JM, Sure U. Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Neurosurg Focus 2010; 29:E1. [DOI: 10.3171/2010.5.focus1090] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Loss-of-function mutations in CCM genes are frequently detected in familial cerebral cavernous malformations (CCMs). However, the current functional studies of the CCM genes in vitro have been performed mostly in commercially purchased normal cell lines and the results appeared discrepant. The fact that the cerebral vascular defects are rarely observed in CCM gene-deficient animals suggests the requirement of additional pathological background for the formation of vascular lesions. Consistent with these data, the authors assumed that silencing CCM genes in the endothelium derived from CCMs (CCM-ECs) serves as a unique and valuable model for investigating the function of the CCM genes in the pathogenesis of CCMs. To this end, the authors investigated the role and signaling of CCM2 and CCM3 in the key steps of angiogenesis using CCM-ECs.
Methods
Endothelial cells (ECs) derived from CCMs were isolated, purified, and cultured from the fresh operative specimens of sporadic CCMs (31 cases). The CCM2 and CCM3 genes were silenced by the specific short interfering RNAs in CCM-ECs and in control cultures (human brain microvascular ECs and human umbilical vein ECs). The efficiency of gene silencing was proven by real-time reverse transcriptase polymerase chain reaction. Cell proliferation and apoptosis, migration, tube formation, and the expression of phosphor-p38, phosphor-Akt, and phosphor-extracellular signal-regulated kinase–1 and 2 (ERK1/2) were analyzed under CCM2 and CCM3 silenced conditions in CCM-ECs.
Results
The CCM3 silencing significantly promoted proliferation and reduced apoptosis in all 3 types of endothelium, but accelerated cell migration exclusively in CCM-ECs. Interestingly, CCM2 siRNA influenced neither cell proliferation nor migration. Silencing of CCM3, and to a lesser extent CCM2, stimulated the growth and extension of sprouts selectively in CCM-ECs. Loss of CCM2 or CCM3 did not significantly influence the formation of the tubelike structure. However, the maintenance of tube stability was largely impaired by CCM2, but not CCM3, silencing. Western blot analysis revealed that CCM2 and CCM3 silencing commonly activated p38, Akt, and ERK1/2 in CCM-ECs.
Conclusions
The unique response of CCM-ECs to CCM2 or CCM3 siRNA indicates that silencing CCM genes in CCM-ECs is valuable for further studies on the pathogenesis of CCMs. Using this model system, the authors demonstrate a distinct role of CCM2 and CCM3 in modulating the different processes of angiogenesis. The stimulation of endothelial proliferation, migration, and massively growing and branching angiogenic sprouts after CCM3 silencing may potentially contribute to the formation of enriched capillary-like immature vessels in CCM lesions. The severe impairment of the tube integrity by CCM2, but not CCM3, silencing is associated with the different intracranial hemorrhage rate observed from CCM2 and CCM3 mutation carriers. The activation of p38, ERK1/2, and Akt signal proteins in CCM2- or CCM3-silenced CCM-ECs suggests a possible involvement of these common pathways in the pathogenesis of CCMs. However, the specific signaling mediating the distinct function of CCM genes in the pathogenesis of CCMs needs to be further elucidated.
Collapse
Affiliation(s)
- Yuan Zhu
- 1Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany and
| | - Qun Wu
- 1Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany and
- 2Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jin-Fang Xu
- 1Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany and
- 2Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dorothea Miller
- 1Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany and
| | | | - Jian-Min Zhang
- 2Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ulrich Sure
- 1Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany and
| |
Collapse
|
45
|
Lauenborg B, Kopp K, Krejsgaard T, Eriksen KW, Geisler C, Dabelsteen S, Gniadecki R, Zhang Q, Wasik MA, Woetmann A, Odum N. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis. APMIS 2010; 118:719-28. [PMID: 20854465 DOI: 10.1111/j.1600-0463.2010.02669.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10 is associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood of cutaneous T-cell lymphoma (Sezary syndrome) patients. PDCD10 is associated with protein phosphatase-2A, a regulator of mitogenesis and apoptosis in malignant T cells. Inhibition of oncogenic signal pathways [Jak3, Notch1, and nuclear factor-κB (NF-κB)] partly inhibits the constitutive PDCD10 expression, whereas an activator of Jak3 and NF-κB, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10 and cancer.
Collapse
Affiliation(s)
- Britt Lauenborg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The trk family of receptor tyrosine kinases supports survival and differentiation in the nervous system. Paradoxically it has also been shown that members of the trk family can induce cell death in pediatric tumor cells of neuronal origin. Moreover, TrkA and TrkC serve as good prognostic indicators in neuroblastoma and medulloblatoma, respectively. Although the possible linkage between these observations was intriguing, until recently there was limited insight on the mechanisms involved. Recent findings suggest that TrkA might influence neuronal cell death through stimulation of p75 cleavage. An alternative p75-independent mechanism was suggested by a newly discovered interaction between TrkA and CCM2 (the protein product of the gene cerebral cavernous malformation 2). Coexpression of CCM2 with TrkA induces cell death in medulloblastoma and neuroblastoma cells, and CCM2 expression levels correlate with those of TrkA and with good prognosis in neuroblastoma patients. Thus, mechanistic clues to the enigma of trk-induced cell death have begun to emerge. Detailed elucidation of these mechanisms and their in vivo physiological significance will be of keen interest for future research.
Collapse
Affiliation(s)
- Liraz Harel
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The genetic basis for a variety of vascular malformation syndromes have been described, with an increasing functional understanding of the associated genes. RECENT FINDINGS Genes responsible for familial vascular malformation syndromes have increasingly been shown to be involved in the control of vascular stability. SUMMARY Genes involved in vascular stability pathways are good candidates for causing vascular malformation syndromes. Although these findings confirm the biologic importance of the involved pathways, further explanations are required to describe the focal nature of disease.
Collapse
Affiliation(s)
- Matthew C.P. Smith
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dean Y. Li
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kevin J. Whitehead
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
48
|
Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur ELF. Retrograde axonal transport: pathways to cell death? Trends Neurosci 2010; 33:335-44. [PMID: 20434225 DOI: 10.1016/j.tins.2010.03.006] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/22/2010] [Accepted: 03/26/2010] [Indexed: 12/11/2022]
Abstract
Active transport along the axon is crucial to the neuron. Motor-driven transport supplies the distal synapse with newly synthesized proteins and lipids, and clears damaged or misfolded proteins. Microtubule motors also drive long-distance signaling along the axon via signaling endosomes. Although positive signaling initiated by neurotrophic factors has been well-studied, recent research has focused on stress-signaling along the axon. Here, the connections between axonal transport alterations and neurodegeneration are discussed, including evidence for defective transport of vesicles, mitochondria, degradative organelles, and signaling endosomes in models of amyotrophic lateral sclerosis, Huntington's, Parkinson's and Alzheimer's disease. Defects in transport are sufficient to induce neurodegeneration, but recent progress suggests that changes in retrograde signaling pathways correlate with rapidly progressive neuronal cell death.
Collapse
Affiliation(s)
- Eran Perlson
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19067, USA
| | | | | | | | | |
Collapse
|
49
|
He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 2010; 3:ra26. [PMID: 20371769 DOI: 10.1126/scisignal.2000722] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an early embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.
Collapse
Affiliation(s)
- Yun He
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
TrkA receptors are well known for promoting neuronal cell survival. However, in some neuroblastic tumors, TrkA activation can instead induce apoptosis. In this issue of Neuron, Harel et al. identify CCM2 as a mediator of TrkA-dependent cell death, suggesting that CCM2 is a distinctive type of tumor suppressor that modulates tyrosine kinase signaling.
Collapse
Affiliation(s)
- Mariella Gruber-Olipitz
- Department of Neurobiology, Harvard Medical School, and Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|