1
|
Magrì A, Lipari CLR, Caccamo A, Battiato G, Conti Nibali S, De Pinto V, Guarino F, Messina A. AAV-mediated upregulation of VDAC1 rescues the mitochondrial respiration and sirtuins expression in a SOD1 mouse model of inherited ALS. Cell Death Discov 2024; 10:178. [PMID: 38627359 PMCID: PMC11021507 DOI: 10.1038/s41420-024-01949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondrial dysfunction represents one of the most common molecular hallmarks of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by the selective degeneration and death of motor neurons. The accumulation of misfolded proteins on and within mitochondria, as observed for SOD1 G93A mutant, correlates with a drastic reduction of mitochondrial respiration and the inhibition of metabolites exchanges, including ADP/ATP and NAD+/NADH, across the Voltage-Dependent Anion-selective Channel 1 (VDAC1), the most abundant channel protein of the outer mitochondrial membrane. Here, we show that the AAV-mediated upregulation of VDAC1 in the spinal cord of transgenic mice expressing SOD1 G93A completely rescues the mitochondrial respiratory profile. This correlates with the increased activity and levels of key regulators of mitochondrial functions and maintenance, namely the respiratory chain Complex I and the sirtuins (Sirt), especially Sirt3. Furthermore, the selective increase of these mitochondrial proteins is associated with an increase in Tom20 levels, the receptor subunit of the TOM complex. Overall, our results indicate that the overexpression of VDAC1 has beneficial effects on ALS-affected tissue by stabilizing the Complex I-Sirt3 axis.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
| | - Cristiana Lucia Rita Lipari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 32, 98166, Messina, Italy
| | - Giuseppe Battiato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Vito De Pinto
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Francesca Guarino
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy.
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy.
| |
Collapse
|
2
|
Liu YJ, Kuo HC, Chern Y. A system-wide mislocalization of RNA-binding proteins in motor neurons is a new feature of ALS. Neurobiol Dis 2021; 160:105531. [PMID: 34634461 DOI: 10.1016/j.nbd.2021.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive degeneration of motor neurons. Mislocalization of TAR DNA-binding protein 43 (TDP-43) is an early event in the formation of cytoplasmic TDP-43-positive inclusions in motor neurons and a hallmark of ALS. However, the underlying mechanism and the pathogenic impact of this mislocalization are relatively unexplored. We previously reported that abnormal AMPK activation mediates TDP-43 mislocalization in motor neurons of humans and mice with ALS. In the present study, we hypothesized that other nuclear proteins are mislocalized in the cytoplasm of motor neurons due to the AMPK-mediated phosphorylation of importin-α1 and subsequently contribute to neuronal degeneration in ALS. To test this hypothesis, we analyzed motor neurons of sporadic ALS patients and found that when AMPK is activated, importin-α1 is abnormally located in the nucleus. Multiple integrative molecular and cellular approaches (including proteomics, immunoprecipitation/western blot analysis, immunohistological evaluations and gradient analysis of preribosomal complexes) were employed to demonstrate that numerous RNA binding proteins are mislocalized in a rodent motor neuron cell line (NSC34) and human motor neurons derived from iPSCs during AMPK activation. We used comparative proteomic analysis of importin-α1 complexes that were immunoprecipitated with a phosphorylation-deficient mutant of importin-α1 (importin-α1-S105A) and a phosphomimetic mutant of importin-α1 (importin-α1-S105D) to identify 194 proteins that have stronger affinity for the unphosphorylated form than the phosphorylated form of importin-α1. Furthermore, GO and STRING analyses suggested that RNA processing and protein translation is the major machinery affected by abnormalities in the AMPK-importin-α1 axis. Consistently, the expression of importin-α1-S105D alters the assembly of preribosomal complexes and increases cell apoptosis. Collectively, we propose that by impairing importin-α1-mediated nuclear import, abnormal AMPK activation in motor neurons alters the cellular distribution of many RNA-binding proteins, which pathogenically affect multiple cellular machineries in motor neurons and contribute to ALS pathogenesis.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Magrì A, Risiglione P, Caccamo A, Formicola B, Tomasello MF, Arrigoni C, Zimbone S, Guarino F, Re F, Messina A. Small Hexokinase 1 Peptide against Toxic SOD1 G93A Mitochondrial Accumulation in ALS Rescues the ATP-Related Respiration. Biomedicines 2021; 9:948. [PMID: 34440152 PMCID: PMC8392704 DOI: 10.3390/biomedicines9080948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in Cu/Zn Superoxide Dismutase (SOD1) gene represent one of the most common causes of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder that specifically affects motor neurons (MNs). The dismutase-active SOD1 G93A mutant is responsible for the formation of toxic aggregates onto the mitochondrial surface, using the Voltage-Dependent Anion Channel 1 (VDAC1) as an anchor point to the organelle. VDAC1 is the master regulator of cellular bioenergetics and by binding to hexokinases (HKs) it controls apoptosis. In ALS, however, SOD1 G93A impairs VDAC1 activity and displaces HK1 from mitochondria, promoting organelle dysfunction, and cell death. Using an ALS cell model, we demonstrate that a small synthetic peptide derived from the HK1 sequence (NHK1) recovers the cell viability in a dose-response manner and the defective mitochondrial respiration profile relative to the ADP phosphorylation. This correlates with an unexpected increase of VDAC1 expression and a reduction of SOD1 mutant accumulation at the mitochondrial level. Overall, our findings provide important new insights into the development of therapeutic molecules to fight ALS and help to better define the link between altered mitochondrial metabolism and MNs death in the disease.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.M.); (S.Z.)
- we.MitoBiotech S.R.L., C.so Italia 172, 95125 Catania, Italy;
| | - Pierpaolo Risiglione
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine & Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (B.F.); (F.R.)
| | | | - Cristina Arrigoni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Stefania Zimbone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.M.); (S.Z.)
| | - Francesca Guarino
- we.MitoBiotech S.R.L., C.so Italia 172, 95125 Catania, Italy;
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine & Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (B.F.); (F.R.)
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.M.); (S.Z.)
- we.MitoBiotech S.R.L., C.so Italia 172, 95125 Catania, Italy;
| |
Collapse
|
4
|
Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals (Basel) 2021; 14:ph14060525. [PMID: 34070895 PMCID: PMC8230131 DOI: 10.3390/ph14060525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), have the potential to accelerate the drug discovery and development process. In this review, by analyzing each stage of the drug discovery and development process, we identified the active role of hPSC-derived in vitro models in phenotypic screening, target-based screening, target validation, toxicology evaluation, precision medicine, clinical trial in a dish, and post-clinical studies. Patient-derived or genome-edited PSCs can generate valid in vitro models for dissecting disease mechanisms, discovering novel drug targets, screening drug candidates, and preclinically and post-clinically evaluating drug safety and efficacy. With the advances in modern biotechnologies and developmental biology, hPSC-derived in vitro models will hopefully improve the cost-effectiveness and the success rate of drug discovery and development.
Collapse
|
5
|
Kim BW, Ryu J, Jeong YE, Kim J, Martin LJ. Human Motor Neurons With SOD1-G93A Mutation Generated From CRISPR/Cas9 Gene-Edited iPSCs Develop Pathological Features of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2020; 14:604171. [PMID: 33328898 PMCID: PMC7710664 DOI: 10.3389/fncel.2020.604171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by gradual degeneration and elimination of motor neurons (MNs) in the motor cortex, brainstem, and spinal cord. Some familial forms of ALS are caused by genetic mutations in superoxide dismutase 1 (SOD1) but the mechanisms driving MN disease are unclear. Identifying the naturally occurring pathology and understanding how this mutant SOD1 can affect MNs in translationally meaningful ways in a valid and reliable human cell model remains to be established. Here, using CRISPR/Cas9 genome editing system and human induced pluripotent stem cells (iPSCs), we generated highly pure, iPSC-derived MNs with a SOD1-G93A missense mutation. With the wild-type cell line serving as an isogenic control and MNs from a patient-derived iPSC line with an SOD1-A4V mutation as a comparator, we identified pathological phenotypes relevant to ALS. The mutant MNs accumulated misfolded and aggregated forms of SOD1 in cell bodies and processes, including axons. They also developed distinctive axonal pathologies. Mutants had axonal swellings with shorter axon length and less numbers of branch points. Moreover, structural and molecular abnormalities in presynaptic and postsynaptic size and density were found in the mutants. Finally, functional studies with microelectrode array demonstrated that the individual mutant MNs exhibited decreased number of spikes and diminished network bursting, but increased burst duration. Taken together, we identified spontaneous disease phenotypes relevant to ALS in mutant SOD1 MNs from genome-edited and patient-derived iPSCs. Our findings demonstrate that SOD1 mutations in human MNs cause cell-autonomous proteinopathy, axonopathy, synaptic pathology, and aberrant neurotransmission.
Collapse
Affiliation(s)
- Byung Woo Kim
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiwon Ryu
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ye Eun Jeong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Kong JN, Zhu Z, Itokazu Y, Wang G, Dinkins MB, Zhong L, Lin HP, Elsherbini A, Leanhart S, Jiang X, Qin H, Zhi W, Spassieva SD, Bieberich E. Novel function of ceramide for regulation of mitochondrial ATP release in astrocytes. J Lipid Res 2018; 59:488-506. [PMID: 29321137 DOI: 10.1194/jlr.m081877] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine (pacFACer), a bifunctional ceramide analog, and binding of tubulin to ceramide-linked agarose beads. Ceramide-associated tubulin (CAT) translocated from the perinuclear region to peripheral CEMAMs and mitochondria, which was prevented in nSMase2-deficient or FB1-treated astrocytes. Proximity ligation and coimmunoprecipitation assays showed that ceramide depletion reduced association of tubulin with voltage-dependent anion channel 1 (VDAC1), an interaction known to block mitochondrial ADP/ATP transport. Ceramide-depleted astrocytes contained higher levels of ATP, suggesting that ceramide-induced CAT formation leads to VDAC1 closure, thereby reducing mitochondrial ATP release, and potentially motility and resistance to Aβ42 Our data also indicate that inhibiting ceramide generation may protect mitochondria in Alzheimer's disease.
Collapse
Affiliation(s)
- Ji-Na Kong
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Zhihui Zhu
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Liansheng Zhong
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY.,College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Hsuan-Pei Lin
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Ahmed Elsherbini
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, KY.,Rehabilitation Center, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Wenbo Zhi
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA .,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
7
|
Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS. Sci Rep 2017; 7:41059. [PMID: 28102336 PMCID: PMC5244478 DOI: 10.1038/srep41059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/15/2016] [Indexed: 11/15/2022] Open
Abstract
The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms.
Collapse
|
8
|
Bird MJ, Thorburn DR, Frazier AE. Modelling biochemical features of mitochondrial neuropathology. Biochim Biophys Acta Gen Subj 2013; 1840:1380-92. [PMID: 24161927 DOI: 10.1016/j.bbagen.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The neuropathology of mitochondrial disease is well characterised. However, pathophysiological mechanisms at the level of biochemistry and cell biology are less clear. Progress in this area has been hampered by the limited accessibility of neurologically relevant material for analysis. SCOPE OF REVIEW Here we discuss the recent development of a variety of model systems that have greatly extended our capacity to understand the biochemical features associated with mitochondrial neuropathology. These include animal and cell based models, with mutations in both nuclear and mitochondrial DNA encoded genes, which aim to recapitulate the neuropathology and cellular biochemistry of mitochondrial diseases. MAJOR CONCLUSIONS Analysis of neurological tissue and cells from these models suggests that although there is no unifying mode of pathogenesis, dysfunction of the oxidative phosphorylation (OXPHOS) system is often central. This can be associated with altered reactive oxygen species (ROS) generation, disruption of the mitochondrial membrane potential (ΔΨm) and inadequate ATP synthesis. Thus, other cellular processes such as calcium (Ca(2+)) homeostasis, cellular signaling and mitochondrial morphology could be altered, ultimately compromising viability of neuronal cells. GENERAL SIGNIFICANCE Mechanisms of neuronal dysfunction in mitochondrial disease are only just beginning to be characterised, are system dependent and complex, and not merely driven by energy deficiency. The diversity of pathogenic mechanisms emphasises the need for characterisation in a wide range of models, as different therapeutic strategies are likely to be needed for different diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Matthew J Bird
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Ann E Frazier
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|