1
|
VanKuren NW, Buerkle NP, Lu W, Westerman EL, Im AK, Massardo D, Southcott L, Palmer SE, Kronforst MR. Genetic, developmental, and neural changes underlying the evolution of butterfly mate preference. PLoS Biol 2025; 23:e3002989. [PMID: 40067994 DOI: 10.1371/journal.pbio.3002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/18/2024] [Indexed: 03/28/2025] Open
Abstract
Many studies have linked genetic variation to behavior, but few connect to the intervening neural circuits that underlie the arc from sensation to action. Here, we used a combination of genome-wide association (GWA), developmental gene expression, and photoreceptor electrophysiology to investigate the architecture of mate choice behavior in Heliconius cydno butterflies, a clade where males identify preferred mates based on wing color patterns. We first found that the GWA variants most strongly associated with male mate choice were tightly linked to the gene controlling wing color in the K locus, consistent with previous mapping efforts. RNA-seq across developmental time points then showed that seven genes near the top GWA peaks were differentially expressed in the eyes, optic lobes, or central brain of white and yellow H. cydno males, many of which have known functions in the development and maintenance of synaptic connections. In the visual system of these butterflies, we identified a striking physiological difference between yellow and white males that could provide an evolutionarily labile circuit motif in the eye to rapidly switch behavioral preference. Using single-cell electrophysiology recordings, we found that some ultraviolet (UV)-sensitive photoreceptors receive inhibition from long-wavelength photoreceptors in the male eye. Surprisingly, the proportion of inhibited UV photoreceptors was strongly correlated with male wing color, suggesting a difference in the early stages of visual processing that could plausibly influence courtship decisions. We discuss potential links between candidate genes and this physiological signature, and suggest future avenues for experimental work. Taken together, our results support the idea that alterations to the evolutionarily labile peripheral nervous system, driven by genetic and gene expression differences, can significantly and rapidly alter essential behaviors.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Nathan P Buerkle
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| | - Wei Lu
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Erica L Westerman
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Alexandria K Im
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Laura Southcott
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Stephanie E Palmer
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- Department of Physics, The University of Chicago, Chicago, Illinois, United States of America
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
2
|
Ochi Y, Yamashita H, Sasaki S, Ogawa T, Yamada Y, Tago T, Satoh T, Satoh AK. Comprehensive study of SNAREs involved in the post-Golgi transport in Drosophila photoreceptors. Front Cell Dev Biol 2024; 12:1442192. [PMID: 39720007 PMCID: PMC11666571 DOI: 10.3389/fcell.2024.1442192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Polarized transport is essential for the construction of multiple plasma membrane domains within cells. Drosophila photoreceptors serve as excellent model systems for studying the mechanisms of polarized transport. We conducted a comprehensive soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) screening of the fly genome using RNAi knockdown and CRISPR/Cas9 somatic knockout combined with the CoinFLP system to identify SNAREs involved in post-Golgi trafficking. The results suggest that in post-Golgi transport, no SNARE is exclusively responsible for transport to a single specific plasma membrane domain. However, each SNARE shows some preference for certain membrane domains: the loss of nSyb, Ykt6, and Snap24/25 results in severe defects in rhabdomere transport, while the loss of Syx1A and Snap29 leads to significant impairments in basolateral transport. Together with the function of Syx1A, Snap25, and nSyb in the fusion of synaptic vesicles with the synaptic plasma membrane, these results suggest that SNAREs are not the sole determinants for vesicles to specify their target subdomains in the plasma membrane. Furthermore, rhodopsin transport to the rhabdomere requires two kinds of R-SNAREs, Ykt6 and nSyb, suggesting that multiple sets of post-Golgi SNAREs contribute in tandem or in cooperation, rather than in parallel.
Collapse
|
3
|
Kos P, Baumann O. Spatial arrangement, polarity, and posttranslational modifications of the microtubule system in the Drosophila eye. Cell Tissue Res 2024; 398:123-137. [PMID: 39152365 PMCID: PMC11525301 DOI: 10.1007/s00441-024-03914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
We have analyzed the organization of the microtubule system in photoreceptor cells and pigment cells within the adult Drosophila compound eye. Immunofluorescence localization of tubulin and of Short stop, a spectraplakin that has been reported to be involved in the anchorage of microtubule minus ends at the membrane, suggests the presence of non-centrosomal microtubule-organizing centers at the distal tip of the visual cells. Ultrastructural analyses confirm that microtubules emanate from membrane-associated plaques at the site of contact with cone cells and that all microtubules are aligned in distal-proximal direction within the photoreceptor cells. Determination of microtubule polarities demonstrated that about 95% of the microtubules in photoreceptor cells are oriented with their plus end in the direction of the synapse. Pigment cells in the eye contain only microtubules aligned in distal-proximal direction, with their plus end pointing towards the retinal floor. There, two populations of microtubules can be distinguished, single microtubules and bundled microtubules, the latter associated with actin filaments. Whereas microtubules in both photoreceptor cells and pigment cells are acetylated and mono/bi-glutamylated on α-tubulin, bundled microtubules in pigment cells are apparently also mono/bi-glutamylated on β-tubulin, providing the possibility of binding different microtubule-associated proteins.
Collapse
Affiliation(s)
- Piotr Kos
- Unit of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Otto Baumann
- Unit of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
4
|
Wells A, Mendes CC, Castellanos F, Mountain P, Wright T, Wainwright SM, Stefana MI, Harris AL, Goberdhan DCI, Wilson C. A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells. PLoS Genet 2023; 19:e1010979. [PMID: 37844085 PMCID: PMC10602379 DOI: 10.1371/journal.pgen.1010979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/26/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.
Collapse
Affiliation(s)
- Adam Wells
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Cláudia C. Mendes
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Felix Castellanos
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Phoebe Mountain
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tia Wright
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - S. Mark Wainwright
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - M. Irina Stefana
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Clive Wilson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Nabavi M, Hiesinger PR. Turnover of synaptic adhesion molecules. Mol Cell Neurosci 2023; 124:103816. [PMID: 36649812 DOI: 10.1016/j.mcn.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Molecular interactions between pre- and postsynaptic membranes play critical roles during the development, function and maintenance of synapses. Synaptic interactions are mediated by cell surface receptors that may be held in place by trans-synaptic adhesion or intracellular binding to membrane-associated scaffolding and signaling complexes. Despite their role in stabilizing synaptic contacts, synaptic adhesion molecules undergo turnover and degradation during all stages of a neuron's life. Here we review current knowledge about membrane trafficking mechanisms that regulate turnover of synaptic adhesion molecules and the functional significance of turnover for synapse development and function. Based on recent proteomics, genetics and imaging studies, synaptic adhesion molecules exhibit remarkably high turnover rates compared to other synaptic proteins. Degradation occurs predominantly via endolysosomal mechanisms, with little evidence for roles of proteasomal or autophagic degradation. Basal turnover occurs both during synaptic development and maintenance. Neuronal activity typically stabilizes synaptic adhesion molecules while downregulating neurotransmitter receptors based on turnover. In conclusion, constitutive turnover of synaptic adhesion molecules is not a necessarily destabilizing factor, but a basis for the dynamic regulation of trans-synaptic interactions during synapse formation and maintenance.
Collapse
Affiliation(s)
- Melinda Nabavi
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany
| | - P Robin Hiesinger
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany.
| |
Collapse
|
6
|
Zhou X, Gan G, Sun Y, Ou M, Geng J, Wang J, Yang X, Huang S, Jia D, Xie W, He H. GTPase-activating protein TBC1D5 coordinates with retromer to constrain synaptic growth by inhibiting BMP signaling. J Genet Genomics 2023; 50:163-177. [PMID: 36473687 DOI: 10.1016/j.jgg.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Formation and plasticity of neural circuits rely on precise regulation of synaptic growth. At Drosophila neuromuscular junction (NMJ), Bone Morphogenetic Protein (BMP) signaling is critical for many aspects of synapse formation and function. The evolutionarily conserved retromer complex and its associated GTPase-activating protein TBC1D5 are critical regulators of membrane trafficking and cellular signaling. However, their functions in regulating the formation of NMJ are less understood. Here, we report that TBC1D5 is required for inhibition of synaptic growth, and loss of TBC1D5 leads to abnormal presynaptic terminal development, including excessive satellite boutons and branch formation. Ultrastructure analysis reveals that the size of synaptic vesicles and the density of subsynaptic reticulum are increased in TBC1D5 mutant boutons. Disruption of interactions of TBC1D5 with Rab7 and retromer phenocopies the loss of TBC1D5. Unexpectedly, we find that TBC1D5 is functionally linked to Rab6, in addition to Rab7, to regulate synaptic growth. Mechanistically, we show that loss of TBC1D5 leads to upregulated BMP signaling by increasing the protein level of BMP type II receptor Wishful Thinking (Wit) at NMJ. Overall, our data establish that TBC1D5 in coordination with retromer constrains synaptic growth by regulating Rab7 activity, which negatively regulates BMP signaling through inhibiting Wit level.
Collapse
Affiliation(s)
- Xiu Zhou
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangming Gan
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China; The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yichen Sun
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Mengzhu Ou
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junhua Geng
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi Yang
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Huang
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Haihuai He
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Nik Akhtar S, Bunner WP, Brennan E, Lu Q, Szatmari EM. Crosstalk between the Rho and Rab family of small GTPases in neurodegenerative disorders. Front Cell Neurosci 2023; 17:1084769. [PMID: 36779014 PMCID: PMC9911442 DOI: 10.3389/fncel.2023.1084769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Neurodegeneration is associated with defects in cytoskeletal dynamics and dysfunctions of the vesicular trafficking and sorting systems. In the last few decades, studies have demonstrated that the key regulators of cytoskeletal dynamics are proteins from the Rho family GTPases, meanwhile, the central hub for vesicle sorting and transport between target membranes is the Rab family of GTPases. In this regard, the role of Rho and Rab GTPases in the induction and maintenance of distinct functional and morphological neuronal domains (such as dendrites and axons) has been extensively studied. Several members belonging to these two families of proteins have been associated with many neurodegenerative disorders ranging from dementia to motor neuron degeneration. In this analysis, we attempt to present a brief review of the potential crosstalk between the Rab and Rho family members in neurodegenerative pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease, and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Shayan Nik Akhtar
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Wyatt P. Bunner
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Elizabeth Brennan
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Qun Lu
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| | - Erzsebet M. Szatmari
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| |
Collapse
|
8
|
Lansdon LA, Dickinson A, Arlis S, Liu H, Hlas A, Hahn A, Bonde G, Long A, Standley J, Tyryshkina A, Wehby G, Lee NR, Daack-Hirsch S, Mohlke K, Girirajan S, Darbro BW, Cornell RA, Houston DW, Murray JC, Manak JR. Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes. Am J Hum Genet 2023; 110:71-91. [PMID: 36493769 PMCID: PMC9892779 DOI: 10.1016/j.ajhg.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA; Department of Pathology, University of Missouri - Kansas City School of Medicine, Kansas City, MO 64108, USA
| | | | - Sydney Arlis
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Huan Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Arman Hlas
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Alyssa Hahn
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Greg Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Abby Long
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | | | - George Wehby
- College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Nanette R Lee
- Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | | | - Karen Mohlke
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | - Benjamin W Darbro
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Robert A Cornell
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas W Houston
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Douthit J, Hairston A, Lee G, Morrison CA, Holguera I, Treisman JE. R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners. eLife 2021; 10:65895. [PMID: 34003117 PMCID: PMC8205486 DOI: 10.7554/elife.65895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
As neural circuits form, growing processes select the correct synaptic partners through interactions between cell surface proteins. The presence of such proteins on two neuronal processes may lead to either adhesion or repulsion; however, the consequences of mismatched expression have rarely been explored. Here, we show that the Drosophila CUB-LDL protein Lost and found (Loaf) is required in the UV-sensitive R7 photoreceptor for normal axon targeting only when Loaf is also present in its synaptic partners. Although targeting occurs normally in loaf mutant animals, removing loaf from photoreceptors or expressing it in their postsynaptic neurons Tm5a/b or Dm9 in a loaf mutant causes mistargeting of R7 axons. Loaf localizes primarily to intracellular vesicles including endosomes. We propose that Loaf regulates the trafficking or function of one or more cell surface proteins, and an excess of these proteins on the synaptic partners of R7 prevents the formation of stable connections.
Collapse
Affiliation(s)
- Jessica Douthit
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Ariel Hairston
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Gina Lee
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Carolyn A Morrison
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Isabel Holguera
- Department of Biology, New York University, New York, United States
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
10
|
Abstract
Defects in membrane trafficking are hallmarks of neurodegeneration. Rab GTPases are key regulators of membrane trafficking. Alterations of Rab GTPases, or the membrane compartments they regulate, are associated with virtually all neuronal activities in health and disease. The observation that many Rab GTPases are associated with neurodegeneration has proven a challenge in the quest for cause and effect. Neurodegeneration can be a direct consequence of a defect in membrane trafficking. Alternatively, changes in membrane trafficking may be secondary consequences or cellular responses. The secondary consequences and cellular responses, in turn, may protect, represent inconsequential correlates or function as drivers of pathology. Here, we attempt to disentangle the different roles of membrane trafficking in neurodegeneration by focusing on selected associations with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and selected neuropathies. We provide an overview of current knowledge on Rab GTPase functions in neurons and review the associations of Rab GTPases with neurodegeneration with respect to the following classifications: primary cause, secondary cause driving pathology or secondary correlate. This analysis is devised to aid the interpretation of frequently observed membrane trafficking defects in neurodegeneration and facilitate the identification of true causes of pathology.
Collapse
|
11
|
Uno T, Ozakiya Y, Furutani M, Sakamoto K, Uno Y, Kajiwara H, Kanamaru K, Mizoguchi A. Functional characterization of insect-specific RabX6 of Bombyx mori. Histochem Cell Biol 2018; 151:187-198. [DOI: 10.1007/s00418-018-1710-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
|
12
|
Riedel F, Galindo A, Muschalik N, Munro S. The two TRAPP complexes of metazoans have distinct roles and act on different Rab GTPases. J Cell Biol 2017; 217:601-617. [PMID: 29273580 PMCID: PMC5800803 DOI: 10.1083/jcb.201705068] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/03/2022] Open
Abstract
In yeast, the TRAPP complexes activate Rab1 with TRAPPII also activating Rab11, but less is known about the two TRAPPs in metazoans. Riedel et al. show that in Drosophila melanogaster, TRAPPIII is an essential Rab1 activator, and TRAPPII activates Rab1 and Rab11 and becomes essential when an unrelated Rab11 activator is deleted. Originally identified in yeast, transport protein particle (TRAPP) complexes are Rab GTPase exchange factors that share a core set of subunits. TRAPPs were initially found to act on Ypt1, the yeast orthologue of Rab1, but recent studies have found that yeast TRAPPII can also activate the Rab11 orthologues Ypt31/32. Mammals have two TRAPP complexes, but their role is less clear, and they contain subunits that are not found in the yeast complexes but are essential for cell growth. To investigate TRAPP function in metazoans, we show that Drosophila melanogaster have two TRAPP complexes similar to those in mammals and that both activate Rab1, whereas one, TRAPPII, also activates Rab11. TRAPPII is not essential but becomes so in the absence of the gene parcas that encodes the Drosophila orthologue of the SH3BP5 family of Rab11 guanine nucleotide exchange factors (GEFs). Thus, in metazoans, Rab1 activation requires TRAPP subunits not found in yeast, and Rab11 activation is shared by TRAPPII and an unrelated GEF that is metazoan specific.
Collapse
Affiliation(s)
- Falko Riedel
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Antonio Galindo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Nadine Muschalik
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Sean Munro
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| |
Collapse
|
13
|
Uno T, Furutani M, Sakamoto K, Uno Y, Kanamaru K, Mizoguchi A, Hiragaki S, Takeda M. Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21404. [PMID: 28707374 DOI: 10.1002/arch.21404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.
Collapse
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Masayuki Furutani
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | | | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Susumu Hiragaki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
14
|
Kannan R, Giniger E. New perspectives on the roles of Abl tyrosine kinase in axon patterning. Fly (Austin) 2017; 11:260-270. [PMID: 28481649 DOI: 10.1080/19336934.2017.1327106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The Abelson tyrosine kinase (Abl) lies at the heart of one of the small set of ubiquitous, conserved signal transduction pathways that do much of the work of development and physiology. Abl signaling is essential to epithelial integrity, motility of autonomous cells such as blood cells, and axon growth and guidance in the nervous system. However, though Abl was one of the first of these conserved signaling machines to be identified, it has been among the last to have its essential architecture elucidated. Here we will first discuss some of the challenges that long delayed the dissection of this pathway, and what they tell us about the special problems of investigating dynamic processes like motility. We will then describe our recent experiments that revealed the functional organization of the Abl pathway in Drosophila neurons. Finally, in the second part of the review we will introduce a different kind of complexity in the role of Abl in motility: the discovery of a previously unappreciated function in protein secretion and trafficking. We will provide evidence that the secretory function of Abl also contributes to its role in axon growth and guidance, and finally end with a discussion of the challenges that Abl pleiotropy provide for the investigator, but the opportunities that it provides for coordinating biological regulation.
Collapse
Affiliation(s)
- Ramakrishnan Kannan
- a Neurobiology Research Center (NRC), Department of Psychiatry , National Institute of Mental Health and Neurosciences , Bangalore , India
| | - Edward Giniger
- b National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD
| |
Collapse
|
15
|
Chen YT, Tai CY. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth. Traffic 2017; 18:287-303. [DOI: 10.1111/tra.12473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Yi-ting Chen
- Taiwan International Graduate Program, Molecular and Cellular Biology Program; Academia Sinica; Taiwan Republic of China
- Institute of Molecular Biology; Academia Sinica; Taiwan Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center; Taiwan Republic of China
| | - Chin-Yin Tai
- Taiwan International Graduate Program, Molecular and Cellular Biology Program; Academia Sinica; Taiwan Republic of China
- Institute of Molecular Biology; Academia Sinica; Taiwan Republic of China
- Development Center for Biotechnology; Institute of Pharmaceutics; Taiwan Republic of China
| |
Collapse
|
16
|
West JJ, Harris TJC. Cadherin Trafficking for Tissue Morphogenesis: Control and Consequences. Traffic 2016; 17:1233-1243. [DOI: 10.1111/tra.12407] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Junior J. West
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
17
|
Yang S, Dizhoor A, Wilson DJ, Adamus G. GCAP1, Rab6, and HSP27: Novel Autoantibody Targets in Cancer-Associated Retinopathy and Autoimmune Retinopathy. Transl Vis Sci Technol 2016; 5:1. [PMID: 27152249 PMCID: PMC4855477 DOI: 10.1167/tvst.5.3.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/19/2016] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Autoantibodies (AAbs) with different retinal specificities were reported in cancer-associated retinopathy (CAR) and autoimmune retinopathy (AR). The goal was to identify the small retinal proteins of apparent molecular mass of 23-kDa often recognized by patients' AAbs. METHODS Sera specific for a 23-kDa retinal protein of 173 patients were investigated retrospectively by Western blotting and double immunofluorescence confocal microscopy. A proteomic analysis revealed new 23-kDa protein candidates, including guanylyl cyclase-activating proteins (GCAPs), heat shock protein 27 (HSP27), and Rab6A GTPase (Rab6A). RESULTS Among the cohort of 173 patients, only 68 had anti-recoverin AAbs and the remaining 105 reacted with 4 unique proteins, which were identified as a Rab6A, HSP27, GCAP1, and GCAP2. Confocal images from a double labeling study confirmed the reactivity of AAbs with different types of cells in human retina, consistent with the target protein's respective cellular functions. Patients (62/173) had been diagnosed with various kinds of cancer, including 20% of patients who had anti-recoverin, 11% anti-Rab6A, and 5% anti-HSP27 AAbs. Only 50% of recoverin-seropositive patients had cancer and the individuals with anti-recoverin AAbs had a significantly higher likelihood to be diagnosed with cancer than patients with other anti-23-kDa AAbs. CONCLUSIONS The newly discovered retinal autoantigens may be involved in pathogenicity of CAR and AR. The recognition of AAbs against various retinal proteins associated with autoimmune retinal degeneration broadens the group of proteins related with these entities. TRANSLATIONAL RELEVANCE Patients with anti-recoverin, anti-GCAP1, anti-Rab6A, and anti-HSP27 AAbs represented diverse clinical phenotypes, so the presence of disease-associated AAbs provides important information for molecular diagnosis.
Collapse
Affiliation(s)
- Sufang Yang
- Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | - David J Wilson
- Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Grazyna Adamus
- Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
18
|
Kulkarni A, Ertekin D, Lee CH, Hummel T. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife 2016; 5:e13715. [PMID: 26987017 PMCID: PMC4846375 DOI: 10.7554/elife.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Collapse
Affiliation(s)
| | - Deniz Ertekin
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Abstract
In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.
Collapse
|
20
|
Iwanami N, Nakamura Y, Satoh T, Liu Z, Satoh AK. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors. PLoS Genet 2016; 12:e1005828. [PMID: 26890939 PMCID: PMC4758697 DOI: 10.1371/journal.pgen.1005828] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network–recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner. Cells in animal bodies have multiple plasma membrane domains; this polarized characteristic of cells is essential for their specific functions. Selective membrane transport pathways play key roles in the construction and maintenance of polarized structures. Drosophila photoreceptors with multiple plasma membrane domains are an excellent model of polarized transport. We performed genetic screening and identified a Rab6 null mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Although Rab6 functions in the Golgi are well known, its function in polarized transport was unexpected. Here, we found that Rab6 and its effector, Rich, are required for multiple apical transport pathways but not the basolateral transport pathway. Our findings strongly indicate that the membrane proteins delivered to multiple polarized domains are not sorted simultaneously: basolateral cargos are segregated before the Rab6-dependent process, and cargos going to multiple apical domains are sorted after Rab6-dependent transport from the trans-Golgi network to the Golgi-associated Rab11-positive compartment, which presumably recycles endosomes. Our finding of the function of Rab6 in polarized transport will elucidate the molecular mechanisms of polarized transport.
Collapse
Affiliation(s)
- Nozomi Iwanami
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuri Nakamura
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takunori Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ziguang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Akiko K. Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
21
|
Zhang Y, Liu X, Bai J, Tian X, Zhao X, Liu W, Duan X, Shang W, Fan HY, Tong C. Mitoguardin Regulates Mitochondrial Fusion through MitoPLD and Is Required for Neuronal Homeostasis. Mol Cell 2016; 61:111-24. [DOI: 10.1016/j.molcel.2015.11.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/12/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
|
22
|
Huang Y, Xie J, Wang T. A Fluorescence-Based Genetic Screen to Study Retinal Degeneration in Drosophila. PLoS One 2015; 10:e0144925. [PMID: 26659849 PMCID: PMC4684387 DOI: 10.1371/journal.pone.0144925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
The Drosophila visual system has been proved to be a powerful genetic model to study eye disease such as retinal degeneration. Here, we describe a genetic method termed "Rh1::GFP ey-flp/hid" that is based on the fluorescence of GFP-tagged major rhodopsin Rh1 in the eyes of living flies and can be used to monitor the integrity of photoreceptor cells. Through combination of this method and ERG recording, we examined a collection of 667 mutants and identified 18 genes that are required for photoreceptor cell maintenance, photoresponse, and rhodopsin synthesis. Our findings demonstrate that this "Rh1::GFP ey-flp/hid" method enables high-throughput F1 genetic screens to rapidly and precisely identify mutations of retinal degeneration.
Collapse
Affiliation(s)
- Yu Huang
- National Institute of Biological Sciences, Beijing, China
| | - Jun Xie
- National Institute of Biological Sciences, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
23
|
Loyer N, Kolotuev I, Pinot M, Le Borgne R. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth. Proc Natl Acad Sci U S A 2015; 112:12717-22. [PMID: 26424451 PMCID: PMC4611665 DOI: 10.1073/pnas.1504455112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intercellular bridges called "ring canals" (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs' anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs' anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.
Collapse
Affiliation(s)
- Nicolas Loyer
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France
| | - Irina Kolotuev
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France; CNRS, Structure Fédérative de Recherche BIOSIT, Microscopy Rennes Imaging Center-Electron Microscopy Facility, F-35000 Rennes, France
| | - Mathieu Pinot
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France
| | - Roland Le Borgne
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France;
| |
Collapse
|
24
|
Abstract
During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions.
Collapse
Affiliation(s)
- Raunak Basu
- a Department of Neurobiology and Anatomy ; University of Utah ; Salt Lake City , UT USA
| | | | | |
Collapse
|
25
|
Kannan R, Kuzina I, Wincovitch S, Nowotarski SH, Giniger E. The Abl/enabled signaling pathway regulates Golgi architecture in Drosophila photoreceptor neurons. Mol Biol Cell 2014; 25:2993-3005. [PMID: 25103244 PMCID: PMC4230588 DOI: 10.1091/mbc.e14-02-0729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/04/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is optimized separately in different tissues for efficient protein trafficking, but we know little of how cell signaling shapes this organelle. We now find that the Abl tyrosine kinase signaling pathway controls the architecture of the Golgi complex in Drosophila photoreceptor (PR) neurons. The Abl effector, Enabled (Ena), selectively labels the cis-Golgi in developing PRs. Overexpression or loss of function of Ena increases the number of cis- and trans-Golgi cisternae per cell, and Ena overexpression also redistributes Golgi to the most basal portion of the cell soma. Loss of Abl or its upstream regulator, the adaptor protein Disabled, lead to the same alterations of Golgi as does overexpression of Ena. The increase in Golgi number in Abl mutants arises in part from increased frequency of Golgi fission events and a decrease in fusions, as revealed by live imaging. Finally, we demonstrate that the effects of Abl signaling on Golgi are mediated via regulation of the actin cytoskeleton. Together, these data reveal a direct link between cell signaling and Golgi architecture. Moreover, they raise the possibility that some of the effects of Abl signaling may arise, in part, from alterations of protein trafficking and secretion.
Collapse
Affiliation(s)
- Ramakrishnan Kannan
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Irina Kuzina
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Wincovitch
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Edward Giniger
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
26
|
Characterization of Rab-interacting lysosomal protein in the brain of Bombyx mori. Histochem Cell Biol 2013; 141:311-20. [PMID: 24190830 DOI: 10.1007/s00418-013-1160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Rab guanosine triphosphatases in eukaryotic cells are key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab7 regulates traffic from early to late endosomes and from late endosomes to vacuoles/lysosomes. The Rab7-interacting lysosomal protein (RILP) was extracted from the silkworm, Bombyx mori (B. mori), and expressed in Escherichia coli (E. coli), followed by its purification. The glutathione sulfotransferase pull-down assay revealed that Rab7 of B. mori interacted with RILP of B. mori. We then produced antibodies against RILP of B. mori in rabbits for their use in Western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue for RILP revealed a single band, at approximately 50 kD. RILP-like immunohistochemical reactivity (RILP-ir) was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Furthermore, RILP-ir was colocalized with the eclosion hormone-ir and bombyxin-ir. However, RILP-ir was not colocalized with prothoracicotropic hormone-ir. These results were similar to those of Rab7 from our previous study. These findings suggest that RILP and Rab7 are involved in the neurosecretion in a restricted subtype of neurons in B. mori. Thus, our study is the first to report of a possible relationship between an insect Rab effector and neurosecretion.
Collapse
|
27
|
The cell biology of synaptic specificity during development. Curr Opin Neurobiol 2013; 23:1018-26. [PMID: 23932598 DOI: 10.1016/j.conb.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 02/05/2023]
Abstract
Proper circuit connectivity is critical for nervous system function. Connectivity derives from the interaction of two interdependent modules: synaptic specificity and synaptic assembly. Specificity involves both targeting of neurons to specific laminar regions and the formation of synapses onto defined subcellular areas. In this review, we focus discussion on recently elucidated molecular mechanisms that control synaptic specificity and link them to synapse assembly. We use these molecular pathways to underscore fundamental cell biological concepts that underpin, and help explain, the rules governing synaptic specificity.
Collapse
|
28
|
Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, Sandoval H, Charng WL, David G, Haueter C, Yamamoto S, Graham BH, Bellen HJ. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 2013; 200:807-820. [PMID: 23509070 PMCID: PMC3601355 DOI: 10.1083/jcb.201208033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/19/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42.
Collapse
Affiliation(s)
- Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Zhihong Li
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Manish Jaiswal
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Vafa Bayat
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Bo Xiong
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hector Sandoval
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Wu-Lin Charng
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Gabriela David
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Claire Haueter
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Shinya Yamamoto
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Brett H. Graham
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hugo J. Bellen
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
29
|
Xiong B, Bayat V, Jaiswal M, Zhang K, Sandoval H, Charng WL, Li T, David G, Duraine L, Lin YQ, Neely GG, Yamamoto S, Bellen HJ. Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 2012; 10:e1001438. [PMID: 23226104 PMCID: PMC3514319 DOI: 10.1371/journal.pbio.1001438] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Rhodopsins (Rhs) are light sensors, and Rh1 is the major Rh in the Drosophila photoreceptor rhabdomere membrane. Upon photoactivation, a fraction of Rh1 is internalized and degraded, but it remains unclear how the rhabdomeric Rh1 pool is replenished and what molecular players are involved. Here, we show that Crag, a DENN protein, is a guanine nucleotide exchange factor for Rab11 that is required for the homeostasis of Rh1 upon light exposure. The absence of Crag causes a light-induced accumulation of cytoplasmic Rh1, and loss of Crag or Rab11 leads to a similar photoreceptor degeneration in adult flies. Furthermore, the defects associated with loss of Crag can be partially rescued with a constitutive active form of Rab11. We propose that upon light stimulation, Crag is required for trafficking of Rh from the trans-Golgi network to rhabdomere membranes via a Rab11-dependent vesicular transport.
Collapse
Affiliation(s)
- Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Manish Jaiswal
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gabriela David
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yong-Qi Lin
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - G. Gregory Neely
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Neurological Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
30
|
Relationship between the expression of Rab family GTPases and neuropeptide hormones in the brain of Bombyx mori. Histochem Cell Biol 2012; 139:299-308. [PMID: 22922733 DOI: 10.1007/s00418-012-1021-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2012] [Indexed: 01/25/2023]
Abstract
Rab proteins are small GTPases that play essential roles in vesicle transport. In this study, we examined the expression of Rab proteins and neuropeptide hormones in the brain of the silkworm, Bombyx mori. We produced antibodies against B. mori Rab1 and Rab14 in rabbits. Immunoblotting of samples of brain tissue from B. mori revealed a single band for each antibody. Rab1 and Rab14 immunohistochemical labeling in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Rab1, Rab7 and Rab14 co-localized with bombyxin. Rab1 and Rab7 co-localized with eclosion hormone. Rab1 co-localized with prothoracicotropic hormone. These results suggest that Rab1, Rab7 and Rab14 may be involved in neuropeptide transport in the brain of B. mori. This is the first report on the specificity of Rab proteins for the secretion of different neuropeptides in insects.
Collapse
|