1
|
Riccitelli S, Yaakov H, Heukamp AS, Ankri L, Rivlin-Etzion M. Retinal ganglion cells encode the direction of motion outside their classical receptive field. Proc Natl Acad Sci U S A 2025; 122:e2415223122. [PMID: 39793063 PMCID: PMC11725840 DOI: 10.1073/pnas.2415223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc. Pharmacological manipulations revealed the necessity of glycinergic amacrine cells for this response. Using in vivo recordings, we identified similar extraclassical responses in lateral geniculate nucleus neurons, suggesting such non conventional DS information is transferred to downstream structures. Our results suggest a complex integration of motion direction processing across the visual field, which arises beyond the classical receptive field boundaries.
Collapse
Affiliation(s)
- Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Michal Rivlin-Etzion
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
2
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Yoshimoto T, Chaya T, Varner LR, Ando M, Tsujii T, Motooka D, Kimura K, Furukawa T. The Rax homeoprotein in Müller glial cells is required for homeostasis maintenance of the postnatal mouse retina. J Biol Chem 2023; 299:105461. [PMID: 37977220 PMCID: PMC10714373 DOI: 10.1016/j.jbc.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.
Collapse
Affiliation(s)
- Takuya Yoshimoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Leah R Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Makoto Ando
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshinori Tsujii
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Kim MH, Strazza P, Puthussery T, Gross OP, Taylor WR, von Gersdorff H. Functional maturation of the rod bipolar to AII-amacrine cell ribbon synapse in the mouse retina. Cell Rep 2023; 42:113440. [PMID: 37976158 PMCID: PMC11560284 DOI: 10.1016/j.celrep.2023.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Retinal ribbon synapses undergo functional changes after eye opening that remain uncharacterized. Using light-flash stimulation and paired patch-clamp recordings, we examined the maturation of the ribbon synapse between rod bipolar cells (RBCs) and AII-amacrine cells (AII-ACs) after eye opening (postnatal day 14) in the mouse retina at near physiological temperatures. We find that light-evoked excitatory postsynaptic currents (EPSCs) in AII-ACs exhibit a slow sustained component that increases in magnitude with advancing age, whereas a fast transient component remains unchanged. Similarly, paired recordings reveal a dual-component EPSC with a slower sustained component that increases during development, even though the miniature EPSC (mEPSC) amplitude and kinetics do not change significantly. We thus propose that the readily releasable pool of vesicles from RBCs increases after eye opening, and we estimate that a short light flash can evoke the release of ∼4,000 vesicles onto a single mature AII-AC.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Paulo Strazza
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Teresa Puthussery
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Owen P Gross
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Physics, Reed College, Portland, OR 97202, USA
| | - W Rowland Taylor
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Zhang K, Su A, Wang Y, Crair M. Acetylcholine Promotes Directionally Biased Glutamatergic Retinal Waves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566639. [PMID: 38014271 PMCID: PMC10680594 DOI: 10.1101/2023.11.10.566639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Spontaneous retinal waves are a critical driving force for the self-organization of the mouse visual system prior to eye-opening. Classically characterized as taking place in three distinct stages defined by their primary excitatory drive, Stage II waves during the first postnatal week are propagated through the volume transmission of acetylcholine while Stage III retinal waves during the second postnatal week depend on glutamatergic transmission from bipolar cells. However, both late Stage II and early Stage III retinal waves share a defining propagation bias toward the temporal-to-nasal direction despite developmental changes in the underlying cholinergic and glutamatergic retinal networks. Here, we leverage genetic and pharmacological manipulations to investigate the relationship between cholinergic and glutamatergic neurotransmission during the transition between Stage II and Stage III waves in vivo. We find that the cholinergic network continues to play a vital role in the propagation of waves during Stage III after the primary mode of neurotransmission changes to glutamate. In the absence of glutamatergic waves, compensatory cholinergic activity persists but lacks the propagation bias typically observed in Stage III waves. In the absence of cholinergic waves, gap junction-mediated activity typically associated with Stage I waves persists throughout the developmental window in which Stage III waves usually emerge and lacks the spatiotemporal profile of normal Stage III waves, including a temporal-to-nasal propagation bias. Finally, we show that cholinergic signaling through β2 subunit-containing nicotinic acetylcholine receptors, essential for Stage II wave propagation, is also critical for Stage III wave directionality.
Collapse
Affiliation(s)
- Kathy Zhang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
- Present address: Department of Ecology and Evolutionary Biology, Yale University, United States
| | - Ashley Su
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
| | - Yixiang Wang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
| | - Michael Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
| |
Collapse
|
6
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
7
|
Tworig JM, Feller MB. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front Neural Circuits 2022; 15:815923. [PMID: 35185477 PMCID: PMC8856507 DOI: 10.3389/fncir.2021.815923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
Müller glia of the retina share many features with astroglia located throughout the brain including maintenance of homeostasis, modulation of neurotransmitter spillover, and robust response to injury. Here we present the molecular factors and signaling events that govern Müller glial specification, patterning, and differentiation. Next, we discuss the various roles of Müller glia in retinal development, which include maintaining retinal organization and integrity as well as promoting neuronal survival, synaptogenesis, and phagocytosis of debris. Finally, we review the mechanisms by which Müller glia integrate into retinal circuits and actively participate in neuronal signaling during development.
Collapse
Affiliation(s)
- Joshua M. Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Joshua M. Tworig,
| | - Marla B. Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
8
|
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021; 373:373/6553/eabd0830. [PMID: 34437090 DOI: 10.1126/science.abd0830] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
The ability to perceive and respond to environmental stimuli emerges in the absence of sensory experience. Spontaneous retinal activity prior to eye opening guides the refinement of retinotopy and eye-specific segregation in mammals, but its role in the development of higher-order visual response properties remains unclear. Here, we describe a transient window in neonatal mouse development during which the spatial propagation of spontaneous retinal waves resembles the optic flow pattern generated by forward self-motion. We show that wave directionality requires the same circuit components that form the adult direction-selective retinal circuit and that chronic disruption of wave directionality alters the development of direction-selective responses of superior colliculus neurons. These data demonstrate how the developing visual system patterns spontaneous activity to simulate ethologically relevant features of the external world and thereby instruct self-organization.
Collapse
Affiliation(s)
- Xinxin Ge
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kathy Zhang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ali S Hamodi
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aude Martinez Sabino
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
9
|
He XY, Zhao CJ, Xu H, Chen K, Bian BSJ, Gong Y, Weng CH, Zeng YX, Fu Y, Liu Y, Yin ZQ. Synaptic repair and vision restoration in advanced degenerating eyes by transplantation of retinal progenitor cells. Stem Cell Reports 2021; 16:1805-1817. [PMID: 34214489 PMCID: PMC8282465 DOI: 10.1016/j.stemcr.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Stem cell transplantation shows enormous potential for treatment of incurable retinal degeneration (RD). To determine if and how grafts connect with the neural circuits of the advanced degenerative retina (ADR) and improve vision, we perform calcium imaging of GCaMP5-positive grafts in retinal slices. The organoid-derived C-Kit+/SSEA1- (C-Kit+) retinal progenitor cells (RPCs) become synaptically organized and build spontaneously active synaptic networks in three major layers of ADR. Light stimulation of the host photoreceptors elicits distinct neuronal responses throughout the graft RPCs. The graft RPCs and their differentiated offspring cells in inner nuclear layer synchronize their activities with the host cells and exhibit presynaptic calcium flux patterns that resemble intact retinal neurons. Once graft-to-host network is established, progressive vision loss is stabilized while control eyes continually lose vision. Therefore, transplantation of organoid-derived C-Kit+ RPCs can form functional synaptic networks within ADR and it holds promising avenue for advanced RD treatment.
Collapse
Affiliation(s)
- Xiang-Yu He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Department of Ophthalmology, the 958th Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China; Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Cong-Jian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Kang Chen
- Department of Ophthalmology, the 958th Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Bai-Shi-Jiao Bian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Chuan-Huang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yu-Xiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yan Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China.
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China; Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China.
| |
Collapse
|
10
|
Choi BJ, Chen YCD, Desplan C. Building a circuit through correlated spontaneous neuronal activity in the developing vertebrate and invertebrate visual systems. Genes Dev 2021; 35:677-691. [PMID: 33888564 PMCID: PMC8091978 DOI: 10.1101/gad.348241.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the development of the vertebrate nervous systems, genetic programs assemble an immature circuit that is subsequently refined by neuronal activity evoked by external stimuli. However, prior to sensory experience, the intrinsic property of the developing nervous system also triggers correlated network-level neuronal activity, with retinal waves in the developing vertebrate retina being the best documented example. Spontaneous activity has also been found in the visual system of Drosophila Here, we compare the spontaneous activity of the developing visual system between mammalian and Drosophila and suggest that Drosophila is an emerging model for mechanistic and functional studies of correlated spontaneous activity.
Collapse
Affiliation(s)
- Ben Jiwon Choi
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
11
|
Yan RS, Yang XL, Zhong YM, Zhang DQ. Spontaneous Depolarization-Induced Action Potentials of ON-Starburst Amacrine Cells during Cholinergic and Glutamatergic Retinal Waves. Cells 2020; 9:cells9122574. [PMID: 33271919 PMCID: PMC7759856 DOI: 10.3390/cells9122574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina.
Collapse
Affiliation(s)
- Rong-Shan Yan
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
| | - Xiong-Li Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| |
Collapse
|
12
|
Liu Z, Kimura Y, Higashijima SI, Hildebrand DGC, Morgan JL, Bagnall MW. Central Vestibular Tuning Arises from Patterned Convergence of Otolith Afferents. Neuron 2020; 108:748-762.e4. [PMID: 32937099 DOI: 10.1016/j.neuron.2020.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 08/19/2020] [Indexed: 01/31/2023]
Abstract
As sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict that complexity arises via convergent inputs from neurons with diverse response properties, in most vertebrate systems, convergence has only been inferred rather than tested directly. Here, we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. Strong, sparse synaptic inputs can be distinguished by their amplitudes, permitting analysis of afferent convergence in vivo. An independent approach, serial-section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Together, these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yukiko Kimura
- Department of Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | - Joshua L Morgan
- Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Kim J, Song M, Jang J, Paik SB. Spontaneous Retinal Waves Can Generate Long-Range Horizontal Connectivity in Visual Cortex. J Neurosci 2020; 40:6584-6599. [PMID: 32680939 PMCID: PMC7486661 DOI: 10.1523/jneurosci.0649-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
In the primary visual cortex (V1) of higher mammals, long-range horizontal connections (LHCs) are observed to develop, linking iso-orientation domains of cortical tuning. It is unknown how this feature-specific wiring of circuitry develops before eye-opening. Here, we suggest that LHCs in V1 may originate from spatiotemporally structured feedforward activities generated from spontaneous retinal waves. Using model simulations based on the anatomy and observed activity patterns of the retina, we show that waves propagating in retinal mosaics can initialize the wiring of LHCs by coactivating neurons of similar tuning, whereas equivalent random activities cannot induce such organizations. Simulations showed that emerged LHCs can produce the patterned activities observed in V1, matching the topography of the underlying orientation map. The model can also reproduce feature-specific microcircuits in the salt-and-pepper organizations found in rodents. Our results imply that early peripheral activities contribute significantly to cortical development of functional circuits.SIGNIFICANCE STATEMENT Long-range horizontal connections (LHCs) in the primary visual cortex (V1) are observed to emerge before the onset of visual experience, thereby selectively connecting iso-domains of orientation map. However, it is unknown how such feature-specific wirings develop before eye-opening. Here, we show that LHCs in V1 may originate from the feature-specific activation of cortical neurons by spontaneous retinal waves during early developmental stages. Our simulations of a visual cortex model show that feedforward activities from the retina initialize the spatial organization of activity patterns in V1, which induces visual feature-specific wirings in the V1 neurons. Our model also explains the origin of cortical microcircuits observed in rodents, suggesting that the proposed developmental mechanism is universally applicable to circuits of various mammalian species.
Collapse
Affiliation(s)
| | - Min Song
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Se-Bum Paik
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Zhang RW, Du WJ, Prober DA, Du JL. Müller Glial Cells Participate in Retinal Waves via Glutamate Transporters and AMPA Receptors. Cell Rep 2020; 27:2871-2880.e2. [PMID: 31167134 PMCID: PMC6659749 DOI: 10.1016/j.celrep.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. Although it is known that the wave is initiated successively by amacrine cells and bipolar cells, the behavior and function of glia in retinal waves remain unclear. Using multiple in vivo methods in larval zebrafish, we found that Müller glial cells (MGCs) display wave-like spontaneous activities, which start at MGC processes within the inner plexiform layer, vertically spread to their somata and endfeet, and horizontally propagate into neighboring MGCs. MGC waves depend on glutamatergic signaling derived from bipolar cells. Moreover, MGCs express both glia-specific glutamate transporters and the AMPA subtype of glutamate receptors. The AMPA receptors mediate MGC calcium activities during retinal waves, whereas the glutamate transporters modulate the occurrence of retinal waves. Thus, MGCs can sense and regulate retinal waves via AMPA receptors and glutamate transporters, respectively.
Collapse
Affiliation(s)
- Rong-Wei Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Wen-Jie Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China.
| |
Collapse
|
15
|
Soto F, Hsiang JC, Rajagopal R, Piggott K, Harocopos GJ, Couch SM, Custer P, Morgan JL, Kerschensteiner D. Efficient Coding by Midget and Parasol Ganglion Cells in the Human Retina. Neuron 2020; 107:656-666.e5. [PMID: 32533915 DOI: 10.1016/j.neuron.2020.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
Abstract
In humans, midget and parasol ganglion cells account for most of the input from the eyes to the brain. Yet, how they encode visual information is unknown. Here, we perform large-scale multi-electrode array recordings from retinas of treatment-naive patients who underwent enucleation surgery for choroidal malignant melanomas. We identify robust differences in the function of midget and parasol ganglion cells, consistent asymmetries between their ON and OFF types (that signal light increments and decrements, respectively) and divergence in the function of human versus non-human primate retinas. Our computational analyses reveal that the receptive fields of human midget and parasol ganglion cells divide naturalistic movies into adjacent spatiotemporal frequency domains with equal stimulus power, while the asymmetric response functions of their ON and OFF types simultaneously maximize stimulus coverage and information transmission and minimize metabolic cost. Thus, midget and parasol ganglion cells in the human retina efficiently encode our visual environment.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jen-Chun Hsiang
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rithwick Rajagopal
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kisha Piggott
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - George J Harocopos
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven M Couch
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip Custer
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Josh L Morgan
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
16
|
Gamlin CR, Zhang C, Dyer MA, Wong ROL. Distinct Developmental Mechanisms Act Independently to Shape Biased Synaptic Divergence from an Inhibitory Neuron. Curr Biol 2020; 30:1258-1268.e2. [PMID: 32109390 DOI: 10.1016/j.cub.2020.01.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Neurons often contact more than one postsynaptic partner type and display stereotypic patterns of synaptic divergence. Such synaptic patterns usually involve some partners receiving more synapses than others. The developmental strategies generating "biased" synaptic distributions remain largely unknown. To gain insight, we took advantage of a compact circuit in the vertebrate retina, whereby the AII amacrine cell (AII AC) provides inhibition onto cone bipolar cell (BC) axons and retinal ganglion cell (RGC) dendrites, but makes the majority of its synapses with the BCs. Using light and electron microscopy, we reconstructed the morphology and connectivity of mouse retinal AII ACs across postnatal development. We found that AII ACs do not elaborate their presynaptic structures, the lobular appendages, until BCs differentiate about a week after RGCs are present. Lobular appendages are present in mutant mice lacking BCs, implying that although synchronized with BC axonal differentiation, presynaptic differentiation of the AII ACs is not dependent on cues from BCs. With maturation, AII ACs maintain a constant number of synapses with RGCs, preferentially increase synaptogenesis with BCs, and eliminate synapses with wide-field amacrine cells. Thus, AII ACs undergo partner type-specific changes in connectivity to attain their mature pattern of synaptic divergence. Moreover, AII ACs contact non-BCs to the same extent in bipolarless retinas, indicating that AII ACs establish partner-type-specific connectivity using diverse mechanisms that operate in parallel but independently.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Chi Zhang
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Children Research Hospital, Danny Thomas Place, Memphis, TN 38105, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Gribizis A, Ge X, Daigle TL, Ackman JB, Zeng H, Lee D, Crair MC. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening. Neuron 2019; 104:711-723.e3. [PMID: 31561919 DOI: 10.1016/j.neuron.2019.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Visual spatial perception in the mammalian brain occurs through two parallel pathways: one reaches the primary visual cortex (V1) through the thalamus and another the superior colliculus (SC) via direct projections from the retina. The origin, development, and relative function of these two evolutionarily distinct pathways remain obscure. We examined the early functional development of both pathways by simultaneously imaging pre- and post-synaptic spontaneous neuronal activity. We observed that the quality of retinal activity transfer to the thalamus and superior colliculus does not change across the first two postnatal weeks. However, beginning in the second postnatal week, retinal activity does not drive V1 as strongly as earlier wave activity, suggesting that intrinsic cortical activity competes with signals from the sensory periphery as the cortex matures. Together, these findings bring new insight into the function of the SC and V1 and the role of peripheral activity in driving both circuits across development.
Collapse
Affiliation(s)
- Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xinxin Ge
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James B Ackman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Daeyeol Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Akin O, Bajar BT, Keles MF, Frye MA, Zipursky SL. Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation. Neuron 2019; 101:894-904.e5. [PMID: 30711355 DOI: 10.1016/j.neuron.2019.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
Abstract
Stereotyped synaptic connections define the neural circuits of the brain. In vertebrates, stimulus-independent activity contributes to neural circuit formation. It is unknown whether this type of activity is a general feature of nervous system development. Here, we report patterned, stimulus-independent neural activity in the Drosophila visual system during synaptogenesis. Using in vivo calcium, voltage, and glutamate imaging, we found that all neurons participate in this spontaneous activity, which is characterized by brain-wide periodic active and silent phases. Glia are active in a complementary pattern. Each of the 15 of over 100 specific neuron types in the fly visual system examined exhibited a unique activity signature. The activity of neurons that are synaptic partners in the adult was highly correlated during development. We propose that this cell-type-specific activity coordinates the development of the functional circuitry of the adult brain.
Collapse
Affiliation(s)
- Orkun Akin
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Bryce T Bajar
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet F Keles
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Tiriac A, Smith BE, Feller MB. Light Prior to Eye Opening Promotes Retinal Waves and Eye-Specific Segregation. Neuron 2018; 100:1059-1065.e4. [PMID: 30392793 DOI: 10.1016/j.neuron.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/24/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
Retinal waves are bursts of correlated activity that occur prior to eye opening and provide a critical source of activity that drives the refinement of retinofugal projections. Retinal waves are thought to be initiated spontaneously with their spatiotemporal features dictated by immature neural circuits. Here we demonstrate that, during the second postnatal week in mice, changes in light intensity dictate where and when a subset of retinal waves are triggered via activation of conventional photoreceptors. Propagation properties of triggered waves are indistinguishable from spontaneous waves, indicating that they are activating the same retinal circuits. Using whole-brain imaging techniques, we demonstrate that light deprivation prior to eye opening diminishes eye-specific segregation of the retinal projections to the dorsolateral geniculate nucleus of the thalamus, but not other retinal targets. These data indicate that light that passes through the closed eyelids plays a critical role in the development of the image-forming visual system.
Collapse
Affiliation(s)
- Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin E Smith
- School of Optometry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun 2017; 8:2025. [PMID: 29229967 PMCID: PMC5725423 DOI: 10.1038/s41467-017-01980-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons downstream of primary receptors are selective for specific stimulus features, and they derive their selectivity both from excitatory and inhibitory synaptic inputs from other neurons and from their own intrinsic properties. Electrical synapses, formed by gap junctions, modulate sensory circuits. Retinal ganglion cells (RGCs) are diverse feature detectors carrying visual information to the brain, and receive excitatory input from bipolar cells and inhibitory input from amacrine cells (ACs). Here we describe a RGC that relies on gap junctions, rather than chemical synapses, to convey its selectivity for the orientation of a visual stimulus. This represents both a new functional role of electrical synapses as the primary drivers of feature selectivity and a new circuit mechanism for orientation selectivity in the retina. Visual input received by photoreceptors is relayed to retinal ganglion cells (RGCs), which have selectivity for inputs of certain orientations. Here, the authors show that gap junction-mediated input onto one type of RGC contributes to its orientation selectivity.
Collapse
|
21
|
Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS Comput Biol 2017; 13:e1005672. [PMID: 28749937 PMCID: PMC5549760 DOI: 10.1371/journal.pcbi.1005672] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/08/2017] [Accepted: 07/07/2017] [Indexed: 01/22/2023] Open
Abstract
Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity. Coordinated spontaneous spiking activity is fundamental for the normal formation of brain circuits during development. However, how ensembles of neurons generate these events remains unclear. To address this question, in the present study, we investigated the network properties that might be required to a neuronal system for the generation of these spontaneous waves of spikes. We performed our study on spontaneously active neuronal cell cultures using high-resolution electrical recordings and a computational network model developed to reproduce our experimental data both quantitatively and qualitatively. Through the analysis of both experimental and simulated data, we found that network bursts are initiated in regions of the network, or “functional communities”, characterized by particular local connectivity properties. We also found that these regions can amplify the background asynchronous spiking activity preceding a network burst and, in this way, can give rise to coordinated spiking events. As a whole, our results suggest the presence of functional communities of neurons in a developing neuronal system that might naturally emerge by following simple constraints on distance-based connectivity. These regions are most likely required for the generation of the spontaneous coordinated activity that can drive activity-dependent circuit formation.
Collapse
|
22
|
Tien NW, Soto F, Kerschensteiner D. Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina. Neuron 2017; 94:656-665.e4. [PMID: 28457596 DOI: 10.1016/j.neuron.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar (B6) cells dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch-clamp recordings revealed that anatomical rewiring precisely preserved contrast and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Thompson A, Gribizis A, Chen C, Crair MC. Activity-dependent development of visual receptive fields. Curr Opin Neurobiol 2017; 42:136-143. [PMID: 28088066 DOI: 10.1016/j.conb.2016.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
It is widely appreciated that neuronal activity contributes to the development of brain representations of the external world. In the visual system, in particular, it is well known that activity cooperates with molecular cues to establish the topographic organization of visual maps on a macroscopic scale [1,2] (Huberman et al., 2008; Cang and Feldheim, 2013), mapping axons in a retinotopic and eye-specific manner. In recent years, significant progress has been made in elucidating the role of activity in driving the finer-scale circuit refinement that shapes the receptive fields of individual cells. In this review, we focus on these recent breakthroughs-primarily in mice, but also in other mammals where noted.
Collapse
Affiliation(s)
- Andrew Thompson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
24
|
Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors. Nat Commun 2016; 7:12650. [PMID: 27586999 PMCID: PMC5025778 DOI: 10.1038/ncomms12650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. Retinal waves are important for visual system development. However, the mechanism involved in their generation remains largely unknown. Here using in vivo two-photon imaging the authors identify the presence of retinal waves in zebrafish larvae and find that they are initiated at bipolar cells via presynaptic NMDARs.
Collapse
|
25
|
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. J Neurosci 2016; 36:3871-86. [PMID: 27030771 DOI: 10.1523/jneurosci.3549-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic "retinal waves" are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as "readouts" of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits.
Collapse
|
26
|
Arroyo DA, Kirkby LA, Feller MB. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 2016; 36:6892-905. [PMID: 27358448 PMCID: PMC4926237 DOI: 10.1523/jneurosci.0572-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown. Here, we investigate the neural circuit that underlies the ipRGC-driven light response in developing mice. We use a combination of calcium imaging, tracer coupling, and electrophysiology experiments to show that ipRGCs form extensive gap junction networks that strongly contribute to the overall light response of the developing retina. Interestingly, we found that gap junction coupling was modulated by spontaneous retinal waves, such that acute blockade of waves dramatically increased the extent of coupling and hence increased the number of light-responsive neurons. Moreover, using an optical sensor, we found that this wave-dependent modulation of coupling is driven by dopamine that is phasically released by retinal waves. Our results demonstrate that ipRGCs form gap junction microcircuits during development that are modulated by retinal waves; these circuits determine the extent of the light response and thus potentially impact the processing of early visual information and light-dependent developmental functions. SIGNIFICANCE STATEMENT Light-dependent functions in early development are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Here we show that ipRGCs form an extensive gap junction network with other retinal neurons, including other ipRGCs, which shapes the retina's overall light response. Blocking cholinergic retinal waves, which are the primary source of neural activity before maturation of photoreceptors, increased the extent of ipRGC gap junction networks, thus increasing the number of light-responsive cells. We determined that this modulation of ipRGC gap junction networks occurs via dopamine released by waves. These results demonstrate that retinal waves mediate dopaminergic modulation of gap junction networks to regulate pre-vision light responses.
Collapse
Affiliation(s)
| | | | - Marla B Feller
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
27
|
Abstract
Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I-III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Departments of Ophthalmology and Visual Sciences, Neuroscience, and Biomedical Engineering, Hope Center for Neurological Diseases, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
28
|
Chaudhury S, Sharma V, Kumar V, Nag TC, Wadhwa S. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev 2016; 38:355-63. [PMID: 26515724 DOI: 10.1016/j.braindev.2015.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/21/2015] [Accepted: 10/10/2015] [Indexed: 12/28/2022]
Abstract
Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Vikram Sharma
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vivek Kumar
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
29
|
Abstract
Early in development, before the onset of vision, the retina establishes direction-selective responses. During this time period, the retina spontaneously generates bursts of action potentials that propagate across its extent. The precise spatial and temporal properties of these "retinal waves" have been implicated in the formation of retinal projections to the brain. However, their role in the development of direction selective circuits within the retina has not yet been determined. We addressed this issue by combining multielectrode array and cell-attached recordings to examine mice that lack the CaV3.2 subunit of T-type Ca2+ channels (CaV3.2 KO) because these mice exhibit disrupted waves during the period that direction selective circuits are established. We found that the spontaneous activity of these mice displays wave-associated bursts of action potentials that are altered from that of control mice: the frequency of these bursts is significantly decreased and the firing rate within each burst is reduced. Moreover, the projection patterns of the retina demonstrate decreased eye-specific segregation in the dorsal lateral geniculate nucleus (dLGN). However, after eye-opening, the direction selective responses of CaV3.2 KO direction selective ganglion cells (DSGCs) are indistinguishable from those of wild-type DSGCs. Our data indicate that although the temporal properties of the action potential bursts associated with retinal waves are important for activity-dependent refining of retinal projections to central targets, they are not critical for establishing direction selectivity in the retina.
Collapse
|
30
|
Akrouh A, Kerschensteiner D. Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. J Neurophysiol 2015; 114:2431-8. [PMID: 26311183 PMCID: PMC4620131 DOI: 10.1152/jn.00526.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
Amacrine cells (ACs) are the most diverse class of neurons in the retina. The variety of signals provided by ACs allows the retina to encode a wide range of visual features. Of the 30-50 AC types in mammalian species, few have been studied in detail. Here, we combine genetic and viral strategies to identify and to characterize morphologically three vasoactive intestinal polypeptide-expressing GABAergic AC types (VIP1-, VIP2-, and VIP3-ACs) in mice. Somata of VIP1- and VIP2-ACs reside in the inner nuclear layer and somata of VIP3-ACs in the ganglion cell layer, and they show asymmetric distributions along the dorsoventral axis of the retina. Neurite arbors of VIP-ACs differ in size (VIP1-ACs ≈ VIP3-ACs > VIP2-ACs) and stratify in distinct sublaminae of the inner plexiform layer. To analyze light responses and underlying synaptic inputs, we target VIP-ACs under 2-photon guidance for patch-clamp recordings. VIP1-ACs depolarize strongly to light increments (ON) over a wide range of stimulus sizes but show size-selective responses to light decrements (OFF), depolarizing to small and hyperpolarizing to large stimuli. The switch in polarity of OFF responses is caused by pre- and postsynaptic surround inhibition. VIP2- and VIP3-ACs both show small depolarizations to ON stimuli and large hyperpolarizations to OFF stimuli but differ in their spatial response profiles. Depolarizations are caused by ON excitation outweighing ON inhibition, whereas hyperpolarizations result from pre- and postsynaptic OFF-ON crossover inhibition. VIP1-, VIP2-, and VIP3-ACs thus differ in response polarity and spatial tuning and contribute to the diversity of inhibitory and neuromodulatory signals in the retina.
Collapse
Affiliation(s)
- Alejandro Akrouh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri; and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Tien NW, Pearson JT, Heller CR, Demas J, Kerschensteiner D. Genetically Identified Suppressed-by-Contrast Retinal Ganglion Cells Reliably Signal Self-Generated Visual Stimuli. J Neurosci 2015; 35:10815-20. [PMID: 26224863 PMCID: PMC4518055 DOI: 10.1523/jneurosci.1521-15.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/26/2015] [Accepted: 06/23/2015] [Indexed: 01/23/2023] Open
Abstract
Spike trains of retinal ganglion cells (RGCs) are the sole source of visual information to the brain; and understanding how the ∼20 RGC types in mammalian retinae respond to diverse visual features and events is fundamental to understanding vision. Suppressed-by-contrast (SbC) RGCs stand apart from all other RGC types in that they reduce rather than increase firing rates in response to light increments (ON) and decrements (OFF). Here, we genetically identify and morphologically characterize SbC-RGCs in mice, and target them for patch-clamp recordings under two-photon guidance. We find that strong ON inhibition (glycine > GABA) outweighs weak ON excitation, and that inhibition (glycine > GABA) coincides with decreases in excitation at light OFF. These input patterns explain the suppressive spike responses of SbC-RGCs, which are observed in dim and bright light conditions. Inhibition to SbC-RGC is driven by rectified receptive field subunits, leading us to hypothesize that SbC-RGCs could signal pattern-independent changes in the retinal image. Indeed, we find that shifts of random textures matching saccade-like eye movements in mice elicit robust inhibitory inputs and suppress spiking of SbC-RGCs over a wide range of texture contrasts and spatial frequencies. Similarly, stimuli based on kinematic analyses of mouse blinking consistently suppress SbC-RGC spiking. Receiver operating characteristics show that SbC-RGCs are reliable indicators of self-generated visual stimuli that may contribute to central processing of blinks and saccades. SIGNIFICANCE STATEMENT This study genetically identifies and morphologically characterizes suppressed-by-contrast retinal ganglion cells (SbC-RGCs) in mice. Targeted patch-clamp recordings from SbC-RGCs under two-photon guidance elucidate the synaptic mechanisms mediating spike suppression to contrast steps, and reveal that SbC-RGCs respond reliably to stimuli mimicking saccade-like eye movements and blinks. The similarity of responses to saccade-like eye movements and blinks suggests that SbC-RGCs may provide a unified signal for self-generated visual stimuli.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Graduate Programs in Neuroscience and
| | - James T Pearson
- Department of Ophthalmology and Visual Sciences, Developmental, Regenerative, and Stem Cell Biology
| | | | - Jay Demas
- Departments of Physics and Biology, St. Olaf College, Northfield, Minnesota 55057
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Department of Anatomy and Neurobiology, and Hope Center for Neurological Disorders at Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, and
| |
Collapse
|
32
|
Zhou EK, Xu HP. GABAergic regulation of spontaneous spike patterns in the developing rabbit retina. Neurosci Lett 2015; 600:137-42. [PMID: 26054939 DOI: 10.1016/j.neulet.2015.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/23/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
Spontaneous retinal waves play a critical role in the establishment of precise neuronal connections in the developing visual system. Retinal waves in mammals progress through three distinct developmental stages prior to eye opening. Using multielectrode array (MEA) recording from the rabbit retina, this study found characteristic changes in the spontaneous spike pattern in the ganglion cell layer during the transition from stage II to stage III retinal waves. These changes led to an increased diversity in the spatiotemporal pattern of the spontaneous activity, consistent with a potential role of stage III retinal waves in the establishment of diverse, cell type-specific neuronal connectivity during visual system development. The study also showed that GABAergic inhibition, predominantly mediated by GABAA receptors, was critical in breaking down large waves of ganglion cell spiking into spatially restricted and temporally diverse spike patterns at stage III, suggesting an important role of amacrine cells in shaping the diverse spontaneous activity patterns of developing ganglion cells.
Collapse
Affiliation(s)
- Elton K Zhou
- Yale College, Yale University, New Haven, CT 06511, USA.
| | - Hong-Ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
33
|
Abstract
Spontaneous retinal activity mediated by glutamatergic neurotransmission-so-called "Stage 3" retinal waves-drives anti-correlated spiking in ON and OFF RGCs during the second week of postnatal development of the mouse. In the mature retina, the activity of a retinal interneuron called the AII amacrine cell is responsible for anti-correlated spiking in ON and OFF α-RGCs. In mature AIIs, membrane hyperpolarization elicits bursting behavior. Here, we postulated that bursting in AIIs underlies the initiation of glutamatergic retinal waves. We tested this hypothesis by using two-photon calcium imaging of spontaneous activity in populations of retinal neurons and by making whole-cell recordings from individual AIIs and α-RGCs in in vitro preparations of mouse retina. We found that AIIs participated in retinal waves, and that their activity was correlated with that of ON α-RGCs and anti-correlated with that of OFF α-RGCs. Though immature AIIs lacked the complement of membrane conductances necessary to generate bursting, pharmacological activation of the M-current, a conductance that modulates bursting in mature AIIs, blocked retinal wave generation. Interestingly, blockade of the pacemaker conductance Ih, a conductance absent in AIIs but present in both ON and OFF cone bipolar cells, caused a dramatic loss of spatial coherence of spontaneous activity. We conclude that during glutamatergic waves, AIIs act to coordinate and propagate activity generated by BCs rather than to initiate spontaneous activity.
Collapse
|
34
|
Lansdell B, Ford K, Kutz JN. A reaction-diffusion model of cholinergic retinal waves. PLoS Comput Biol 2014; 10:e1003953. [PMID: 25474327 PMCID: PMC4256014 DOI: 10.1371/journal.pcbi.1003953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2014] [Indexed: 01/21/2023] Open
Abstract
Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability.
Collapse
Affiliation(s)
- Benjamin Lansdell
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Kevin Ford
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Poria D, Dhingra NK. Spontaneous oscillatory activity in rd1 mouse retina is transferred from ON pathway to OFF pathway via glycinergic synapse. J Neurophysiol 2014; 113:420-5. [PMID: 25355966 DOI: 10.1152/jn.00702.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinal ganglion cells (RGCs) spike randomly in the dark and carry information about visual stimuli to the brain via specific spike patterns. However, following photoreceptor loss, both ON and OFF type of RGCs exhibit spontaneous oscillatory spike activity, which reduces the quality of information they can carry. Furthermore, it is not clear how the oscillatory activity would interact with the experimental treatment approaches designed to produce artificial vision. The oscillatory activity is considered to originate in ON-cone bipolar cells, AII amacrine cells, and/or their synaptic interactions. However, it is unknown how the oscillatory activity is generated in OFF RGCs. We tested the hypothesis that oscillatory activity is transferred from the ON pathway to the OFF pathway via the glycinergic AII amacrine cells. Using extracellular loose-patch and whole cell patch recordings, we recorded oscillatory activity in ON and OFF RGCs and studied their response to strychnine, a specific glycine receptor blocker. The cells were labeled with a fluorescent dye, and their dendritic stratification in inner plexiform layer was studied using confocal microscopy. Application of strychnine resulted in abolition of the oscillatory burst activity in OFF RGCs but not in ON RGCs, implying that oscillatory activity is generated in ON pathway and is transferred to OFF pathway, likely via the glycinergic AII amacrine cells. We found oscillatory activity in RGCs as early as postnatal day 12 in rd1 mouse, when rod degeneration has started but cones are still intact. This suggests that the oscillatory activity in rd1 mouse retina originates in rod pathway.
Collapse
Affiliation(s)
- Deepak Poria
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | |
Collapse
|
36
|
Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, Berdondini L, Sernagor E. Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. J Physiol 2013; 592:1545-63. [PMID: 24366261 PMCID: PMC3979611 DOI: 10.1113/jphysiol.2013.262840] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The immature retina generates spontaneous waves of spiking activity that sweep across the ganglion cell layer during a limited period of development before the onset of visual experience. The spatiotemporal patterns encoded in the waves are believed to be instructive for the wiring of functional connections throughout the visual system. However, the ontogeny of retinal waves is still poorly documented as a result of the relatively low resolution of conventional recording techniques. Here, we characterize the spatiotemporal features of mouse retinal waves from birth until eye opening in unprecedented detail using a large-scale, dense, 4096-channel multielectrode array that allowed us to record from the entire neonatal retina at near cellular resolution. We found that early cholinergic waves propagate with random trajectories over large areas with low ganglion cell recruitment. They become slower, smaller and denser when GABAA signalling matures, as occurs beyond postnatal day (P) 7. Glutamatergic influences dominate from P10, coinciding with profound changes in activity dynamics. At this time, waves cease to be random and begin to show repetitive trajectories confined to a few localized hotspots. These hotspots gradually tile the retina with time, and disappear after eye opening. Our observations demonstrate that retinal waves undergo major spatiotemporal changes during ontogeny. Our results support the hypotheses that cholinergic waves guide the refinement of retinal targets and that glutamatergic waves may also support the wiring of retinal receptive fields.
Collapse
Affiliation(s)
- Alessandro Maccione
- Institute of Neuroscience, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ackman JB, Crair MC. Role of emergent neural activity in visual map development. Curr Opin Neurobiol 2013; 24:166-75. [PMID: 24492092 DOI: 10.1016/j.conb.2013.11.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/12/2013] [Accepted: 11/22/2013] [Indexed: 11/24/2022]
Abstract
The initial structural and functional development of visual circuits in reptiles, birds, and mammals happens independent of sensory experience. After eye opening, visual experience further refines and elaborates circuits that are critical for normal visual function. Innate genetic programs that code for gradients of molecules provide gross positional information for developing nerve cells, yet much of the cytoarchitectural complexity and synaptogenesis of neurons depends on calcium influx, neurotransmitter release, and neural activity before the onset of vision. In fact, specific spatiotemporal patterns of neural activity, or 'retinal waves', emerge amidst the development of the earliest connections made between excitable cells in the developing eye. These patterns of spontaneous activity, which have been observed in all amniote retinae examined to date, may be an evolved adaptation for species with long gestational periods before the onset of functional vision, imparting an informational robustness and redundancy to guide development of visual maps across the nervous system. Recent experiments indicate that retinal waves play a crucial role in the development of interconnections between different parts of the visual system, suggesting that these spontaneous patterns serve as a template-matching mechanism to prepare higher-order visually associative circuits for the onset of visuomotor learning and behavior. Key questions for future studies include determining the exact sources and nature of spontaneous activity during development, characterizing the interactions between neural activity and transcriptional gene regulation, and understanding the extent of circuit connectivity governed by retinal waves within and between sensory-motor systems.
Collapse
Affiliation(s)
- James B Ackman
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, United States; Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, United States; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
38
|
Abstract
Throughout development, the nervous system produces patterned spontaneous activity. Research over the past two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e., linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
39
|
Toychiev AH, Yee CW, Sagdullaev BT. Correlated spontaneous activity persists in adult retina and is suppressed by inhibitory inputs. PLoS One 2013; 8:e77658. [PMID: 24204906 PMCID: PMC3812233 DOI: 10.1371/journal.pone.0077658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022] Open
Abstract
Spontaneous rhythmic activity is a hallmark feature of the developing retina, where propagating retinal waves instruct axonal targeting and synapse formation. Retinal waves cease around the time of eye-opening; however, the fate of the underlying synaptic circuitry is unknown. Whether retinal waves are unique to the developing retina or if they can be induced in adulthood is not known. Combining patch-clamp techniques with calcium imaging, we demonstrate that propagative events persist in adult mouse retina when it is deprived of inhibitory input. This activity originates in bipolar cells, resembling glutamatergic stage III retinal waves. We find that, as it develops, the network interactions progressively curtail this activity. Together, this provides evidence that the correlated propagative neuronal activity can be induced in adult retina following the blockade of inhibitory interactions.
Collapse
Affiliation(s)
- Abduqodir H Toychiev
- Department of Neurology, Weill Medical College of Cornell University, New York, New York, United States of America ; Department of Ophthalmology, Weill Medical College of Cornell University, New York, New York, United States of America
| | | | | |
Collapse
|