1
|
Srinivasan K, Lowet E, Gomes B, Desimone R. Stimulus representations in visual cortex shaped by spatial attention and microsaccades. Proc Natl Acad Sci U S A 2025; 122:e2420704122. [PMID: 40424126 DOI: 10.1073/pnas.2420704122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Microsaccades (MSs) are commonly associated with covert spatial attention, yet their impact on cortical processing of visual objects remains unclear. Rhesus macaques, randomly cued to attend to a target object amid distracters, were rewarded for detecting a color change in the target. While spatial attention does not affect the object tuning curves of V4 cells, the direction of MS significantly influenced object representations in V4 throughout the entire trial. Specifically, intervals following an MS toward the target exhibited superior stimulus decoding and sharper tuning curves compared to intervals following an MS away from the target. Furthermore, MSs directed toward the target enhanced neuronal responses to behaviorally relevant color changes, leading to faster reaction times. This sharpening effect stems from both a refreshing of the initial sensory response and an amplification of attention effects. The firing rate enhancement associated with spatial attention is delayed until the occurrence of the first MS directed toward the target. Subsequently, a positive effect of attention on firing rate, influenced by MS direction, was found throughout the trial across deep and superficial layers of V4, lateral pulvinar, and IT cortex. In summary, these findings underscore a crucial link between covert attention, object processing, and their coordination with MSs.
Collapse
Affiliation(s)
- Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eric Lowet
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GE, The Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Bruno Gomes
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Laboratório de Simulação e Biologia Computacional, Centro de Computação de Alto Desempenho, Universidade Federal do Pará, Belém-Pa 66075-110, Brazil
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Morton MP, Denagamage S, Blume IJ, Reynolds JH, Jadi MP, Nandy AS. Brain state and cortical layer-specific mechanisms underlying perception at threshold. eLife 2024; 12:RP91722. [PMID: 39556415 PMCID: PMC11573349 DOI: 10.7554/elife.91722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Identical stimuli can be perceived or go unnoticed across successive presentations, producing divergent behavioral outcomes despite similarities in sensory input. We sought to understand how fluctuations in behavioral state and cortical layer and cell class-specific neural activity underlie this perceptual variability. We analyzed physiological measurements of state and laminar electrophysiological activity in visual area V4 while monkeys were rewarded for correctly reporting a stimulus change at perceptual threshold. Hit trials were characterized by a behavioral state with heightened arousal, greater eye position stability, and enhanced decoding performance of stimulus identity from neural activity. Target stimuli evoked stronger responses in V4 in hit trials, and excitatory neurons in the superficial layers, the primary feed-forward output of the cortical column, exhibited lower variability. Feed-forward interlaminar population correlations were stronger on hits. Hit trials were further characterized by greater synchrony between the output layers of the cortex during spontaneous activity, while the stimulus-evoked period showed elevated synchrony in the feed-forward pathway. Taken together, these results suggest that a state of elevated arousal and stable retinal images allow enhanced processing of sensory stimuli, which contributes to hits at perceptual threshold.
Collapse
Affiliation(s)
- Mitchell P Morton
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Sachira Denagamage
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Isabel J Blume
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - John H Reynolds
- Systems Neurobiology Laboratories, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Monika P Jadi
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Psychiatry, Yale UniversityNew HavenUnited States
- Wu Tsai Institute, Yale UniversityNew HavenUnited States
| | - Anirvan S Nandy
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Wu Tsai Institute, Yale UniversityNew HavenUnited States
- Department of Psychology, Yale UniversityNew HavenUnited States
- Kavli Institute for Neuroscience, Yale UniversityNew HavenUnited States
| |
Collapse
|
3
|
Goldstein AT, Stanford TR, Salinas E. Coupling of saccade plans to endogenous attention during urgent choices. eLife 2024; 13:RP97883. [PMID: 39495217 PMCID: PMC11534328 DOI: 10.7554/elife.97883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only. Here, we use an urgent task design to resolve the evolution of a visuomotor choice on a moment-by-moment basis while independently controlling the endogenous (goal-driven) and exogenous (salience-driven) contributions to performance. Human participants saw a peripheral cue and, depending on its color, either looked at it (prosaccade) or looked at a diametrically opposite, uninformative non-cue (antisaccade). By varying the luminance of the stimuli, the exogenous contributions could be cleanly dissociated from the endogenous process guiding the choice over time. According to the measured time courses, generating a correct antisaccade requires about 30 ms more processing time than generating a correct prosaccade based on the same perceptual signal. The results indicate that saccade plans elaborated during fixation are biased toward the location where attention is endogenously deployed, but the coupling is weak and can be willfully overridden very rapidly.
Collapse
Affiliation(s)
- Allison T Goldstein
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| |
Collapse
|
4
|
Prakash SS, Mayo JP, Ray S. Dissociation of Attentional State and Behavioral Outcome Using Local Field Potentials. eNeuro 2024; 11:ENEURO.0327-24.2024. [PMID: 39389779 PMCID: PMC11552547 DOI: 10.1523/eneuro.0327-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Successful behavior depends on the attentional state and other factors related to decision-making, which may modulate neuronal activity differently. Here, we investigated whether attentional state and behavioral outcome (i.e., whether a target is detected or missed) are distinguishable using the power and phase of local field potential recorded bilaterally from area V4 of two male rhesus monkeys performing a cued visual attention task. To link each trial's outcome to pairwise measures of attention that are typically averaged across trials, we used several methods to obtain single-trial estimates of spike count correlation and phase consistency. Surprisingly, while attentional location was best discriminated using gamma and high-gamma power, behavioral outcome was best discriminated by alpha power and steady-state visually evoked potential. Power outperformed absolute phase in attentional/behavioral discriminability, although single-trial gamma phase consistency provided reasonably high attentional discriminability. Our results suggest a dissociation between the neuronal mechanisms that regulate attentional focus and behavioral outcome.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
5
|
Goldstein AT, Stanford TR, Salinas E. Coupling of saccade plans to endogenous attention during urgent choices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583058. [PMID: 38496491 PMCID: PMC10942325 DOI: 10.1101/2024.03.01.583058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only. Here, we use an urgent task design to resolve the evolution of a visuomotor choice on a moment-by-moment basis while independently controlling the endogenous (goal-driven) and exogenous (salience-driven) contributions to performance. Human participants saw a peripheral cue and, depending on its color, either looked at it (prosaccade) or looked at a diametrically opposite, uninformative non-cue (antisaccade). By varying the luminance of the stimuli, the exogenous contributions could be cleanly dissociated from the endogenous process guiding the choice over time. According to the measured timecourses, generating a correct antisaccade requires about 30 ms more processing time than generating a correct prosaccade based on the same perceptual signal. The results indicate that saccade plans elaborated during fixation are biased toward the location where attention is endogenously deployed, but the coupling is weak and can be willfully overridden very rapidly.
Collapse
Affiliation(s)
- Allison T Goldstein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157-1010, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157-1010, USA
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157-1010, USA
| |
Collapse
|
6
|
Zhu J, Zhou XM, Constantinidis C, Salinas E, Stanford TR. Parallel signatures of cognitive maturation in primate antisaccade performance and prefrontal activity. iScience 2024; 27:110488. [PMID: 39156644 PMCID: PMC11326912 DOI: 10.1016/j.isci.2024.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
The ability to suppress inappropriate actions and respond rapidly to appropriate ones matures late in life, after puberty. We investigated the development of this capability in monkeys trained to look away from a lone, bright stimulus (antisaccade task). We evaluated behavioral performance and recorded neural activity in the prefrontal cortex both before and after the transition from puberty to adulthood. Compared to when young, adult monkeys processed the stimulus more rapidly, resisted more effectively the involuntary urge to look at it, and adhered to the task rule more consistently. The spatially selective visuomotor neurons in the prefrontal cortex provided neural correlates of these behavioral changes indicative of a faster transition from stimulus-driven (exogenous) to goal-driven (endogenous) control within the time course of each trial. The results reveal parallel signatures of cognitive maturation in behavior and prefrontal activity that are consistent with improvements in attentional allocation after adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Terrence R. Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Roshanaei M, Bahmani Z, Clark K, Daliri MR, Noudoost B. Working memory expedites the processing of visual signals within the extrastriate cortex. iScience 2024; 27:110489. [PMID: 39100691 PMCID: PMC11295472 DOI: 10.1016/j.isci.2024.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Working memory is the ability to maintain information in the absence of sensory input. In this study, we investigated how working memory benefits processing in visual areas. Using a measure of phase consistency to detect the arrival time of visual signals to the middle temporal (MT) area, we assessed the impact of working memory on the speed of sensory processing. We recorded from MT neurons in two monkeys during a spatial working memory task with visual probes. When the memorized location closely matches the receptive field center of the recording site, visual input arrives sooner, but if the memorized location does not match the receptive field center then the arrival of visual information is delayed. Thus, working memory expedites the arrival of visual input in MT. These results reveal that even in the absence of firing rate changes, working memory can still benefit the processing of information within sensory areas.
Collapse
Affiliation(s)
- Majid Roshanaei
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Zahra Bahmani
- Department of Electrical & Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
8
|
Sengupta A, Banerjee S, Ganesh S, Grover S, Sridharan D. The right posterior parietal cortex mediates spatial reorienting of attentional choice bias. Nat Commun 2024; 15:6938. [PMID: 39138185 PMCID: PMC11322534 DOI: 10.1038/s41467-024-51283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Attention facilitates behavior by enhancing perceptual sensitivity (sensory processing) and choice bias (decisional weighting) for attended information. Whether distinct neural substrates mediate these distinct components of attention remains unknown. We investigate the causal role of key nodes of the right posterior parietal cortex (rPPC) in the forebrain attention network in sensitivity versus bias control. Two groups of participants performed a cued attention task while we applied either inhibitory, repetitive transcranial magnetic stimulation (n = 28) or 40 Hz transcranial alternating current stimulation (n = 26) to the dorsal rPPC. We show that rPPC stimulation - with either modality - impairs task performance by selectively altering attentional modulation of bias but not sensitivity. Specifically, participants' bias toward the uncued, but not the cued, location reduced significantly following rPPC stimulation - an effect that was consistent across both neurostimulation cohorts. In sum, the dorsal rPPC causally mediates the reorienting of choice bias, one particular component of visual spatial attention.
Collapse
Affiliation(s)
- Ankita Sengupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Foundation of Art and Health India, Bangalore, 560066, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Verily Life Sciences, San Francisco, CA, 94080, USA
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
9
|
Egger SW, Keemink SW, Goldman MS, Britten KH. Context-dependence of deterministic and nondeterministic contributions to closed-loop steering control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605325. [PMID: 39131368 PMCID: PMC11312469 DOI: 10.1101/2024.07.26.605325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In natural circumstances, sensory systems operate in a closed loop with motor output, whereby actions shape subsequent sensory experiences. A prime example of this is the sensorimotor processing required to align one's direction of travel, or heading, with one's goal, a behavior we refer to as steering. In steering, motor outputs work to eliminate errors between the direction of heading and the goal, modifying subsequent errors in the process. The closed-loop nature of the behavior makes it challenging to determine how deterministic and nondeterministic processes contribute to behavior. We overcome this by applying a nonparametric, linear kernel-based analysis to behavioral data of monkeys steering through a virtual environment in two experimental contexts. In a given context, the results were consistent with previous work that described the transformation as a second-order linear system. Classically, the parameters of such second-order models are associated with physical properties of the limb such as viscosity and stiffness that are commonly assumed to be approximately constant. By contrast, we found that the fit kernels differed strongly across tasks in these and other parameters, suggesting context-dependent changes in neural and biomechanical processes. We additionally fit residuals to a simple noise model and found that the form of the noise was highly conserved across both contexts and animals. Strikingly, the fitted noise also closely matched that found previously in a human steering task. Altogether, this work presents a kernel-based analysis that characterizes the context-dependence of deterministic and non-deterministic components of a closed-loop sensorimotor task.
Collapse
Affiliation(s)
- Seth W. Egger
- Center for Neuroscience, University of California, Davis
| | - Sander W. Keemink
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Mark S. Goldman
- Center for Neuroscience, University of California, Davis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
- Department of Ophthalmology and Vision Science, University of California, Davis
| | - Kenneth H. Britten
- Center for Neuroscience, University of California, Davis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
| |
Collapse
|
10
|
Prakash SS, Mayo JP, Ray S. Dissociation of attentional state and behavioral outcome using local field potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.05.552102. [PMID: 37609148 PMCID: PMC10441331 DOI: 10.1101/2023.08.05.552102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Successful behavior depends on attentional state and other factors related to decision-making, which may modulate neuronal activity differently. Here, we investigated whether attentional state and behavioral outcome (i.e., whether a target is detected or missed) are distinguishable using the power and phase of local field potential (LFP) recorded bilaterally from area V4 of monkeys performing a cued visual attention task. To link each trial's outcome to pairwise measures of attention that are typically averaged across trials, we used several methods to obtain single-trial estimates of spike count correlation and phase consistency. Surprisingly, while attentional location was best discriminated using gamma and high-gamma power, behavioral outcome was best discriminated by alpha power and steady-state visually evoked potential. Power outperformed absolute phase in attentional/behavioral discriminability, although single-trial gamma phase consistency provided reasonably high attentional discriminability. Our results suggest a dissociation between the neuronal mechanisms that regulate attentional focus and behavioral outcome.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India, 560012
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 15219
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India, 560012
| |
Collapse
|
11
|
Xia R, Chen X, Engel TA, Moore T. Common and distinct neural mechanisms of attention. Trends Cogn Sci 2024; 28:554-567. [PMID: 38388258 PMCID: PMC11153008 DOI: 10.1016/j.tics.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Despite a constant deluge of sensory stimulation, only a fraction of it is used to guide behavior. This selective processing is generally referred to as attention, and much research has focused on the neural mechanisms controlling it. Recently, research has broadened to include more ways by which different species selectively process sensory information, whether due to the sensory input itself or to different behavioral and brain states. This work has produced a complex and disjointed body of evidence across different species and forms of attention. However, it has also provided opportunities to better understand the breadth of attentional mechanisms. Here, we summarize the evidence that suggests that different forms of selective processing are supported by mechanisms both common and distinct.
Collapse
Affiliation(s)
- Ruobing Xia
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaomo Chen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Laamerad P, Liu LD, Pack CC. Decision-related activity and movement selection in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadk7214. [PMID: 38809984 PMCID: PMC11135405 DOI: 10.1126/sciadv.adk7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.
Collapse
Affiliation(s)
- Pooya Laamerad
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Liu D. Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | |
Collapse
|
13
|
Mollard S, Wacongne C, Bohte SM, Roelfsema PR. Recurrent neural networks that learn multi-step visual routines with reinforcement learning. PLoS Comput Biol 2024; 20:e1012030. [PMID: 38683837 PMCID: PMC11081502 DOI: 10.1371/journal.pcbi.1012030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/09/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Many cognitive problems can be decomposed into series of subproblems that are solved sequentially by the brain. When subproblems are solved, relevant intermediate results need to be stored by neurons and propagated to the next subproblem, until the overarching goal has been completed. We will here consider visual tasks, which can be decomposed into sequences of elemental visual operations. Experimental evidence suggests that intermediate results of the elemental operations are stored in working memory as an enhancement of neural activity in the visual cortex. The focus of enhanced activity is then available for subsequent operations to act upon. The main question at stake is how the elemental operations and their sequencing can emerge in neural networks that are trained with only rewards, in a reinforcement learning setting. We here propose a new recurrent neural network architecture that can learn composite visual tasks that require the application of successive elemental operations. Specifically, we selected three tasks for which electrophysiological recordings of monkeys' visual cortex are available. To train the networks, we used RELEARNN, a biologically plausible four-factor Hebbian learning rule, which is local both in time and space. We report that networks learn elemental operations, such as contour grouping and visual search, and execute sequences of operations, solely based on the characteristics of the visual stimuli and the reward structure of a task. After training was completed, the activity of the units of the neural network elicited by behaviorally relevant image items was stronger than that elicited by irrelevant ones, just as has been observed in the visual cortex of monkeys solving the same tasks. Relevant information that needed to be exchanged between subroutines was maintained as a focus of enhanced activity and passed on to the subsequent subroutines. Our results demonstrate how a biologically plausible learning rule can train a recurrent neural network on multistep visual tasks.
Collapse
Affiliation(s)
- Sami Mollard
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Catherine Wacongne
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- AnotherBrain, Paris, France
| | - Sander M. Bohte
- Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter R. Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
- Department of Neurosurgery, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Lehet M, Rolfs M, Bao J, Fattal J, Thakkar KN. Pre-saccadic shifts of attention in individuals diagnosed with schizophrenia. Brain Behav 2024; 14:e3466. [PMID: 38450916 PMCID: PMC10918725 DOI: 10.1002/brb3.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Pathophysiological theories of schizophrenia (SZ) symptoms posit an abnormality in using predictions to guide behavior. One such prediction is based on imminent movements, via corollary discharge signals (CD) that relay information about planned movement kinematics to sensory brain regions. Empirical evidence suggests a reduced influence of sensorimotor predictions in individuals with SZ within multiple sensory systems, including in the visual system. One function of CD in the visual system is to selectively enhance visual sensitivity at the location of planned eye movements (pre-saccadic attention), thus enabling a prediction of the to-be-foveated stimulus. We expected pre-saccadic attention shifts to be less pronounced in individuals with SZ than in healthy controls (HC), resulting in unexpected sensory consequences of eye movements, which may relate to symptoms than can be explained in the context of altered allocation of attention. METHODS We examined this question by testing 30 SZ and 30 HC on a pre-saccadic attention task. On each trial participants made a saccade to a cued location in an array of four stimuli. A discrimination target that was either congruent or incongruent with the cued location was briefly presented after the cue, during saccade preparation. Pre-saccadic attention was quantified by comparing accuracy on congruent trials to incongruent trials within the interval preceding the saccade. RESULTS Although SZs were less accurate overall, the magnitude of the pre-saccadic attention effect generally did not differ across groups nor show a convincing relationship with symptom severity. We did, however, observe that SZ had reduced pre-saccadic attention effects when the discrimination target (probe) was presented at early stages of saccade planning, when pre-saccadic attention effects first emerged in HC. CONCLUSION These findings suggest generally intact pre-saccadic shifts of attention in SZ, albeit slightly delayed. Results contribute to our understanding of altered sensory predictions in people with schizophrenia.
Collapse
Affiliation(s)
- Matthew Lehet
- Department of PsychologyMichigan State UniversityEast LansingMichiganUSA
| | - Martin Rolfs
- Department of PsychologyHumboldt UniversityBerlinGermany
| | - Jacqueline Bao
- Department of PsychologyMichigan State UniversityEast LansingMichiganUSA
| | - Jessica Fattal
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Katharine N. Thakkar
- Department of PsychologyMichigan State UniversityEast LansingMichiganUSA
- Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineEast LansingMichiganUSA
| |
Collapse
|
15
|
Chandrasekaran AN, Vermani A, Gupta P, Steinmetz N, Moore T, Sridharan D. Dissociable components of attention exhibit distinct neuronal signatures in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadi0645. [PMID: 38306428 PMCID: PMC10836731 DOI: 10.1126/sciadv.adi0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Attention can be deployed in multiple forms and facilitates behavior by influencing perceptual sensitivity and choice bias. Attention is also associated with a myriad of changes in sensory neural activity. Yet, the relationship between the behavioral components of attention and the accompanying changes in neural activity remains largely unresolved. We examined this relationship by quantifying sensitivity and bias in monkeys performing a task that dissociated eye movement responses from the focus of covert attention. Unexpectedly, bias, not sensitivity, increased at the focus of covert attention, whereas sensitivity increased at the location of planned eye movements. Furthermore, neuronal activity within visual area V4 varied robustly with bias, but not sensitivity, at the focus of covert attention. In contrast, correlated variability between neuronal pairs was lowest at the location of planned eye movements, and varied with sensitivity, but not bias. Thus, dissociable behavioral components of attention exhibit distinct neuronal signatures within the visual cortex.
Collapse
Affiliation(s)
| | - Ayesha Vermani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Priyanka Gupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Nicholas Steinmetz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
- Computer Science and Automation, Indian Institute of Science, Bangalore, KA, India
| |
Collapse
|
16
|
Coop SH, Yates JL, Mitchell JF. Pre-saccadic Neural Enhancements in Marmoset Area MT. J Neurosci 2024; 44:e2034222023. [PMID: 38050176 PMCID: PMC10860570 DOI: 10.1523/jneurosci.2034-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.
Collapse
Affiliation(s)
- Shanna H Coop
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| | - Jacob L Yates
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
- Department of Biology, University of Maryland College Park, College Park, Maryland, 20742-5025
| | - Jude F Mitchell
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| |
Collapse
|
17
|
Gupta P, Sridharan D. Presaccadic attention does not facilitate the detection of changes in the visual field. PLoS Biol 2024; 22:e3002485. [PMID: 38271460 PMCID: PMC10810526 DOI: 10.1371/journal.pbio.3002485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Planning a rapid eye movement (saccade) changes how we perceive our visual world. Even before we move the eyes visual discrimination sensitivity improves at the impending target of eye movements, a phenomenon termed "presaccadic attention." Yet, it is unknown if such presaccadic selection merely affects perceptual sensitivity, or also affects downstream decisional processes, such as choice bias. We report a surprising lack of presaccadic perceptual benefits in a common, everyday setting-detection of changes in the visual field. Despite the lack of sensitivity benefits, choice bias for reporting changes increased reliably for the saccade target. With independent follow-up experiments, we show that presaccadic change detection is rendered more challenging because percepts at the saccade target location are biased toward, and more precise for, only the most recent of two successive stimuli. With a Bayesian model, we show how such perceptual and choice biases are crucial to explain the effects of saccade plans on change detection performance. In sum, visual change detection sensitivity does not improve presaccadically, a result that is readily explained by teasing apart distinct components of presaccadic selection. The findings may have critical implications for real-world scenarios, like driving, that require rapid gaze shifts in dynamically changing environments.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
18
|
Cowley BR, Stan PL, Pillow JW, Smith MA. Compact deep neural network models of visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568315. [PMID: 38045255 PMCID: PMC10690296 DOI: 10.1101/2023.11.22.568315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A powerful approach to understanding the computations carried out in visual cortex is to develop models that predict neural responses to arbitrary images. Deep neural network (DNN) models have worked remarkably well at predicting neural responses [1, 2, 3], yet their underlying computations remain buried in millions of parameters. Have we simply replaced one complicated system in vivo with another in silico? Here, we train a data-driven deep ensemble model that predicts macaque V4 responses ~50% more accurately than currently-used task-driven DNN models. We then compress this deep ensemble to identify compact models that have 5,000x fewer parameters yet equivalent accuracy as the deep ensemble. We verified that the stimulus preferences of the compact models matched those of the real V4 neurons by measuring V4 responses to both 'maximizing' and adversarial images generated using compact models. We then analyzed the inner workings of the compact models and discovered a common circuit motif: Compact models share a similar set of filters in early stages of processing but then specialize by heavily consolidating this shared representation with a precise readout. This suggests that a V4 neuron's stimulus preference is determined entirely by its consolidation step. To demonstrate this, we investigated the compression step of a dot-detecting compact model and found a set of simple computations that may be carried out by dot-selective V4 neurons. Overall, our work demonstrates that the DNN models currently used in computational neuroscience are needlessly large; our approach provides a new way forward for obtaining explainable, high-accuracy models of visual cortical neurons.
Collapse
Affiliation(s)
- Benjamin R. Cowley
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Patricia L. Stan
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan W. Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Matthew A. Smith
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Isabel Vanegas M, Akbarian A, Clark KL, Nesse WH, Noudoost B. Prefrontal activity sharpens spatial sensitivity of extrastriate neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564095. [PMID: 37961256 PMCID: PMC10634826 DOI: 10.1101/2023.10.25.564095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Prefrontal cortex is known to exert its control over representation of visual signals in extrastriate areas such as V4. Frontal Eye Field (FEF) is suggested to be the proxy for the prefrontal control of visual signals. However, it is not known which aspects of sensory representation within extrastriate areas are under the influence of FEF activity. We employed a causal manipulation to examine how FEF activity contributes to spatial sensitivity of extrastriate neurons. Finding FEF and V4 areas with overlapping response field (RF) in two macaque monkeys, we recorded V4 responses before and after inactivation of the overlapping FEF. We assessed spatial sensitivity of V4 neurons in terms of their response gain, RF spread, coding capacity, and spatial discriminability. Unexpectedly, we found that in the absence of FEF activity, spontaneous and visually-evoked activity of V4 neurons both increase and their RFs enlarge. However, assessing the spatial sensitivity within V4, we found that these changes were associated with a reduction in the ability of V4 neurons to represent spatial information: After FEF inactivation, V4 neurons showed a reduced response gain and a decrease in their spatial discriminability and coding capacity. These results show the necessity of FEF activity for shaping spatial responses of extrastriate neurons and indicates the importance of FEF inputs in sharpening the sensitivity of V4 responses.
Collapse
Affiliation(s)
- M. Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Akbarian
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Kelsey L. Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - William H. Nesse
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Mathematics, University of Utah, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
20
|
Li HH, Curtis CE. Neural population dynamics of human working memory. Curr Biol 2023; 33:3775-3784.e4. [PMID: 37595590 PMCID: PMC10528783 DOI: 10.1016/j.cub.2023.07.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
The activity of neurons in macaque prefrontal cortex (PFC) persists during working memory (WM) delays, providing a mechanism for memory.1,2,3,4,5,6,7,8,9,10,11 Although theory,11,12 including formal network models,13,14 assumes that WM codes are stable over time, PFC neurons exhibit dynamics inconsistent with these assumptions.15,16,17,18,19 Recently, multivariate reanalyses revealed the coexistence of both stable and dynamic WM codes in macaque PFC.20,21,22,23 Human EEG studies also suggest that WM might contain dynamics.24,25 Nonetheless, how WM dynamics vary across the cortical hierarchy and which factors drive dynamics remain unknown. To elucidate WM dynamics in humans, we decoded WM content from fMRI responses across multiple cortical visual field maps.26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 We found coexisting stable and dynamic neural representations of WM during a memory-guided saccade task. Geometric analyses of neural subspaces revealed that early visual cortex exhibited stronger dynamics than high-level visual and frontoparietal cortex. Leveraging models of population receptive fields, we visualized and made the neural dynamics interpretable. We found that during WM delays, V1 population initially encoded a narrowly tuned bump of activation centered on the peripheral memory target. Remarkably, this bump then spread inward toward foveal locations, forming a vector along the trajectory of the forthcoming memory-guided saccade. In other words, the neural code transformed into an abstraction of the stimulus more proximal to memory-guided behavior. Therefore, theories of WM must consider both sensory features and their task-relevant abstractions because changes in the format of memoranda naturally drive neural dynamics.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
21
|
Jonikaitis D, Zhu S. Action space restructures visual working memory in prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553135. [PMID: 37645942 PMCID: PMC10462047 DOI: 10.1101/2023.08.13.553135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Visual working memory enables flexible behavior by decoupling sensory stimuli from behavioral actions. While previous studies have predominantly focused on the storage component of working memory, the role of future actions in shaping working memory remains unknown. To answer this question, we used two working memory tasks that allowed the dissociation of sensory and action components of working memory. We measured behavioral performance and neuronal activity in the macaque prefrontal cortex area, frontal eye fields. We show that the action space reshapes working memory, as evidenced by distinct patterns of memory tuning and attentional orienting between the two tasks. Notably, neuronal activity during the working memory period predicted future behavior and exhibited mixed selectivity in relation to the sensory space but linear selectivity relative to the action space. This linear selectivity was achieved through the rapid transformation from sensory to action space and was subsequently maintained as a stable cross-temporal population activity pattern. Combined, we provide direct physiological evidence of the action-oriented nature of frontal eye field neurons during memory tasks and demonstrate that the anticipation of behavioral outcomes plays a significant role in transforming and maintaining the contents of visual working memory.
Collapse
|
22
|
Zeraati R, Shi YL, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Levina A, Engel TA. Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity. Nat Commun 2023; 14:1858. [PMID: 37012299 PMCID: PMC10070246 DOI: 10.1038/s41467-023-37613-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Intrinsic timescales characterize dynamics of endogenous fluctuations in neural activity. Variation of intrinsic timescales across the neocortex reflects functional specialization of cortical areas, but less is known about how intrinsic timescales change during cognitive tasks. We measured intrinsic timescales of local spiking activity within columns of area V4 in male monkeys performing spatial attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales, fast and slow. The slow timescale increased when monkeys attended to the receptive fields location and correlated with reaction times. By evaluating predictions of several network models, we found that spatiotemporal correlations in V4 activity were best explained by the model in which multiple timescales arise from recurrent interactions shaped by spatially arranged connectivity, and attentional modulation of timescales results from an increase in the efficacy of recurrent interactions. Our results suggest that multiple timescales may arise from the spatial connectivity in the visual cortex and flexibly change with the cognitive state due to dynamic effective interactions between neurons.
Collapse
Affiliation(s)
- Roxana Zeraati
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yan-Liang Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Marc A Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Anna Levina
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- Department of Computer Science, University of Tübingen, Tübingen, Germany.
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany.
| | - Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
23
|
Bellato A, Perna J, Ganapathy PS, Solmi M, Zampieri A, Cortese S, Faraone SV. Association between ADHD and vision problems. A systematic review and meta-analysis. Mol Psychiatry 2023; 28:410-422. [PMID: 35931758 PMCID: PMC9812778 DOI: 10.1038/s41380-022-01699-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 01/11/2023]
Abstract
AIM To conduct the first systematic review and meta-analysis assessing whether attention-deficit/hyperactivity disorder (ADHD) is associated with disorders of the eye, and/or altered measures of visual function. METHOD Based on a pre-registered protocol (PROSPERO: CRD42021256352), we searched PubMed, Web of Knowledge/Science, Ovid Medline, Embase and APA PsycINFO up to 16th November 2021, with no language/type of document restrictions. We included observational studies reporting at least one measure of vision in people of any age meeting DSM/ICD criteria for ADHD and in people without ADHD; or the prevalence of ADHD in people with and without vision disorders. Study quality was assessed with the Appraisal tool for Cross-Sectional Studies (AXIS). Random effects meta-analyses were used for data synthesis. RESULTS We included 42 studies in the narrative synthesis and 35 studies in the meta-analyses (3,250,905 participants). We found meta-analytic evidence of increased risk of astigmatism (OR = 1.79 [CI: 1.50, 2.14]), hyperopia and hypermetropia (OR = 1.79 [CI: 1.66, 1.94]), strabismus (OR = 1.93 [CI: 1.75, 2.12]), unspecified vision problems (OR = 1.94 [CI: 1.38, 2.73]) and reduced near point of convergence (OR = 5.02 [CI: 1.78, 14.11]); increased lag (Hedge's g = 0.63 [CI: 0.30, 0.96]) and variability (Hedge's g = 0.40 [CI: 0.17, 0.64]) of the accommodative response; and increased self-reported vision problems (Hedge's g = 0.63 [CI: 0.44, 0.82]) in people with ADHD compared to those without ADHD (with no significant heterogeneity). We also found meta-analytic evidence of no differences between people with and without ADHD on retinal nerve fiber layer thickness (Hedge's g = -0.19 [CI: -0.41, 0.02]) and refractive error (Hedge's g = 0.08 [CI: -0.26, 0.42]) (with no significant heterogeneity). DISCUSSION ADHD is associated with some self-reported and objectively ascertained functional vision problems, but not with structural alterations of the eye. Further studies should clarify the causal relationship, if any, between ADHD and problems of vision. TRIAL REGISTRATION PROSPERO registration: CRD42021256352.
Collapse
Affiliation(s)
- Alessio Bellato
- School of Psychology, University of Nottingham Malaysia, Semenyih, Malaysia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Perna
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Preethi S Ganapathy
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Andrea Zampieri
- Vittorio Emanuele III Hospital, Montecchio Maggiore, Vicenza, Italy
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephen V Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
24
|
Sawant Y, Kundu JN, Radhakrishnan VB, Sridharan D. A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection. J Neurosci 2022; 42:8262-8283. [PMID: 36123120 PMCID: PMC9653281 DOI: 10.1523/jneurosci.0164-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
We present a biologically inspired recurrent neural network (RNN) that efficiently detects changes in natural images. The model features sparse, topographic connectivity (st-RNN), closely modeled on the circuit architecture of a "midbrain attention network." We deployed the st-RNN in a challenging change blindness task, in which changes must be detected in a discontinuous sequence of images. Compared with a conventional RNN, the st-RNN learned 9x faster and achieved state-of-the-art performance with 15x fewer connections. An analysis of low-dimensional dynamics revealed putative circuit mechanisms, including a critical role for a global inhibitory (GI) motif, for successful change detection. The model reproduced key experimental phenomena, including midbrain neurons' sensitivity to dynamic stimuli, neural signatures of stimulus competition, as well as hallmark behavioral effects of midbrain microstimulation. Finally, the model accurately predicted human gaze fixations in a change blindness experiment, surpassing state-of-the-art saliency-based methods. The st-RNN provides a novel deep learning model for linking neural computations underlying change detection with psychophysical mechanisms.SIGNIFICANCE STATEMENT For adaptive survival, our brains must be able to accurately and rapidly detect changing aspects of our visual world. We present a novel deep learning model, a sparse, topographic recurrent neural network (st-RNN), that mimics the neuroanatomy of an evolutionarily conserved "midbrain attention network." The st-RNN achieved robust change detection in challenging change blindness tasks, outperforming conventional RNN architectures. The model also reproduced hallmark experimental phenomena, both neural and behavioral, reported in seminal midbrain studies. Lastly, the st-RNN outperformed state-of-the-art models at predicting human gaze fixations in a laboratory change blindness experiment. Our deep learning model may provide important clues about key mechanisms by which the brain efficiently detects changes.
Collapse
Affiliation(s)
- Yash Sawant
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Jogendra Nath Kundu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India
| | | | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Seideman JA, Stanford TR, Salinas E. A conflict between spatial selection and evidence accumulation in area LIP. Nat Commun 2022; 13:4463. [PMID: 35915096 PMCID: PMC9343639 DOI: 10.1038/s41467-022-32209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
The lateral intraparietal area (LIP) contains spatially selective neurons that help guide eye movements and, according to numerous studies, do so by accumulating sensory evidence in favor of one choice (e.g., look left) or another (look right). To examine this functional link, we trained two monkeys on an urgent motion discrimination task, a task with which the evolution of both the recorded neuronal activity and the subject's choice can be tracked millisecond by millisecond. We found that while choice accuracy increased steeply with increasing sensory evidence, at the same time, the LIP selection signal became progressively weaker, as if it hindered performance. This effect was consistent with the transient deployment of spatial attention to disparate locations away from the relevant sensory cue. The results demonstrate that spatial selection in LIP is dissociable from, and may even conflict with, evidence accumulation during informed saccadic choices.
Collapse
Affiliation(s)
- Joshua A Seideman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA.
| |
Collapse
|
26
|
Hanning NM, Wollenberg L, Jonikaitis D, Deubel H. Eye and hand movements disrupt attentional control. PLoS One 2022; 17:e0262567. [PMID: 35045115 PMCID: PMC8769330 DOI: 10.1371/journal.pone.0262567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Voluntary attentional control is the ability to selectively focus on a subset of visual information in the presence of other competing stimuli–a marker of cognitive control enabling flexible, goal-driven behavior. To test its robustness, we contrasted attentional control with the most common source of attentional orienting in daily life: attention shifts prior to goal-directed eye and hand movements. In a multi-tasking paradigm, human participants attended at a location while planning eye or hand movements elsewhere. Voluntary attentional control suffered with every simultaneous action plan, even under reduced task difficulty and memory load–factors known to interfere with attentional control. Furthermore, the performance cost was limited to voluntary attention: We observed simultaneous attention benefits at two movement targets without attentional competition between them. This demonstrates that the visual system allows for the concurrent representation of multiple attentional foci. Since attentional control is extremely fragile and dominated by premotor attention shifts, we propose that action-driven selection plays the superordinate role for visual selection.
Collapse
Affiliation(s)
- Nina Maria Hanning
- Department Psychologie, Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München, München, Germany
- Department of Psychology and Center for Neural Science, New York University, New York, NY, United States of America
- * E-mail:
| | - Luca Wollenberg
- Department Psychologie, Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München, München, Germany
- Department Biologie, Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, München, Germany
| | - Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Heiner Deubel
- Department Psychologie, Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
27
|
Shi YL, Steinmetz NA, Moore T, Boahen K, Engel TA. Cortical state dynamics and selective attention define the spatial pattern of correlated variability in neocortex. Nat Commun 2022; 13:44. [PMID: 35013259 PMCID: PMC8748999 DOI: 10.1038/s41467-021-27724-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2021] [Indexed: 01/20/2023] Open
Abstract
Correlated activity fluctuations in the neocortex influence sensory responses and behavior. Neural correlations reflect anatomical connectivity but also change dynamically with cognitive states such as attention. Yet, the network mechanisms defining the population structure of correlations remain unknown. We measured correlations within columns in the visual cortex. We show that the magnitude of correlations, their attentional modulation, and dependence on lateral distance are explained by columnar On-Off dynamics, which are synchronous activity fluctuations reflecting cortical state. We developed a network model in which the On-Off dynamics propagate across nearby columns generating spatial correlations with the extent controlled by attentional inputs. This mechanism, unlike previous proposals, predicts spatially non-uniform changes in correlations during attention. We confirm this prediction in our columnar recordings by showing that in superficial layers the largest changes in correlations occur at intermediate lateral distances. Our results reveal how spatially structured patterns of correlated variability emerge through interactions of cortical state dynamics, anatomical connectivity, and attention.
Collapse
Affiliation(s)
- Yan-Liang Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Tirin Moore
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kwabena Boahen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
28
|
Westerberg JA, Sigworth EA, Schall JD, Maier A. Pop-out search instigates beta-gated feature selectivity enhancement across V4 layers. Proc Natl Acad Sci U S A 2021; 118:e2103702118. [PMID: 34893538 PMCID: PMC8685673 DOI: 10.1073/pnas.2103702118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Visual search is a workhorse for investigating how attention interacts with processing of sensory information. Attentional selection has been linked to altered cortical sensory responses and feature preferences (i.e., tuning). However, attentional modulation of feature selectivity during search is largely unexplored. Here we map the spatiotemporal profile of feature selectivity during singleton search. Monkeys performed a search where a pop-out feature determined the target of attention. We recorded laminar neural responses from visual area V4. We first identified "feature columns" which showed preference for individual colors. In the unattended condition, feature columns were significantly more selective in superficial relative to middle and deep layers. Attending a stimulus increased selectivity in all layers but not equally. Feature selectivity increased most in the deep layers, leading to higher selectivity in extragranular layers as compared to the middle layer. This attention-induced enhancement was rhythmically gated in phase with the beta-band local field potential. Beta power dominated both extragranular laminar compartments, but current source density analysis pointed to an origin in superficial layers, specifically. While beta-band power was present regardless of attentional state, feature selectivity was only gated by beta in the attended condition. Neither the beta oscillation nor its gating of feature selectivity varied with microsaccade production. Importantly, beta modulation of neural activity predicted response times, suggesting a direct link between attentional gating and behavioral output. Together, these findings suggest beta-range synaptic activation in V4's superficial layers rhythmically gates attentional enhancement of feature tuning in a way that affects the speed of attentional selection.
Collapse
Affiliation(s)
- Jacob A Westerberg
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240;
| | | | - Jeffrey D Schall
- Centre for Vision Research, Vision: Science to Applications Program, Department of Biology and Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Alexander Maier
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
29
|
Srinath R, Ruff DA, Cohen MR. Attention improves information flow between neuronal populations without changing the communication subspace. Curr Biol 2021; 31:5299-5313.e4. [PMID: 34699782 PMCID: PMC8665027 DOI: 10.1016/j.cub.2021.09.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Visual attention allows observers to change the influence of different parts of a visual scene on their behavior, suggesting that information can be flexibly shared between visual cortex and neurons involved in decision making. We investigated the neural substrate of flexible information routing by analyzing the activity of populations of visual neurons in the medial temporal area (MT) and oculo-motor neurons in the superior colliculus (SC) while rhesus monkeys switched spatial attention. We demonstrated that attention increases the efficacy of visuomotor communication: trial-to-trial variability in SC population activity could be better predicted by the activity of the MT population (and vice versa) when attention was directed toward their joint receptive fields. Surprisingly, this improvement in prediction was not explained by changes in the dimensionality of the shared subspace or in the magnitude of local or shared pairwise noise correlations. These results lay a foundation for future theoretical and experimental studies into how visual attention can flexibly change information flow between sensory and decision neurons.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Douglas A Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Jing R, Yang C, Huang X, Li W. Perceptual learning as a result of concerted changes in prefrontal and visual cortex. Curr Biol 2021; 31:4521-4533.e3. [PMID: 34450086 DOI: 10.1016/j.cub.2021.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Our perceptual ability remarkably improves with training. Some studies on visual perceptual learning have shown refined neural representation of the trained stimulus in the visual cortex, whereas others have exclusively argued for improved readout and decision-making processes in the frontoparietal cortex. The mixed results have rendered the underlying neural mechanisms puzzling and hotly debated. By simultaneously recording from monkey visual area V4 and ventrolateral prefrontal cortex (PFC) implanted with microelectrode arrays, we dissected learning-induced cortical changes over the course of training the monkeys in a global form detection task. Decoding analysis dissociated two distinct components of neuronal population codes that were progressively and markedly enhanced in both V4 and PFC. One component was closely related to the target stimulus feature and was subject to task-dependent top-down modulation; it emerged earlier in V4 than PFC and its enhancement was specific to the trained configuration of the target stimulus. The other component of the neural code was entirely related to the animal's behavioral choice; it emerged earlier in PFC than V4 and its enhancement completely generalized to an untrained stimulus configuration. These results implicate two concurrent and synergistic learning processes: a perceptual process that is specific to the details of the trained stimulus feature and a cognitive process that is dependent on the total amount of learning experience in the trained task. When combined, these two learning processes were well predictive of the animal's learning behavior.
Collapse
Affiliation(s)
- Rui Jing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chen Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xin Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Wu Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
31
|
Li HH, Hanning NM, Carrasco M. To look or not to look: dissociating presaccadic and covert spatial attention. Trends Neurosci 2021; 44:669-686. [PMID: 34099240 PMCID: PMC8552810 DOI: 10.1016/j.tins.2021.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Attention is a central neural process that enables selective and efficient processing of visual information. Individuals can attend to specific visual information either overtly, by making an eye movement to an object of interest, or covertly, without moving their eyes. We review behavioral, neuropsychological, neurophysiological, and computational evidence of presaccadic attentional modulations that occur while preparing saccadic eye movements, and highlight their differences from those of covert spatial endogenous (voluntary) and exogenous (involuntary) attention. We discuss recent studies and experimental procedures on how these different types of attention impact visual performance, alter appearance, differentially modulate the featural representation of basic visual dimensions (orientation and spatial frequency), engage different neural computations, and recruit partially distinct neural substrates. We conclude that presaccadic attention and covert attention are dissociable.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| | - Nina M Hanning
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
32
|
Stanford TR, Salinas E. Urgent Decision Making: Resolving Visuomotor Interactions at High Temporal Resolution. Annu Rev Vis Sci 2021; 7:323-348. [PMID: 34171199 DOI: 10.1146/annurev-vision-100419-103842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measuring when exactly perceptual decisions are made is crucial for defining how the activation of specific neurons contributes to behavior. However, in traditional, nonurgent visuomotor tasks, the uncertainty of this temporal measurement is very large. This is a problem not only for delimiting the capacity of perception, but also for correctly interpreting the functional roles ascribed to choice-related neuronal responses. In this article, we review psychophysical, neurophysiological, and modeling work based on urgent visuomotor tasks in which this temporal uncertainty can be effectively overcome. The cornerstone of this work is a novel behavioral metric that describes the evolution of the subject's perceptual judgment moment by moment, allowing us to resolve numerous perceptual events that unfold within a few tens of milliseconds. In this framework, the neural distinction between perceptual evaluation and motor selection processes becomes particularly clear, as the conclusion of one is not contingent on that of the other. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Terrence R Stanford
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; ,
| | - Emilio Salinas
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; ,
| |
Collapse
|
33
|
Abstract
Remapping is a property of some cortical and subcortical neurons that update their responses around the time of an eye movement to account for the shift of stimuli on the retina due to the saccade. Physiologically, remapping is traditionally tested by briefly presenting a single stimulus around the time of the saccade and looking at the onset of the response and the locations in space to which the neuron is responsive. Here we suggest that a better way to understand the functional role of remapping is to look at the time at which the neural signal emerges when saccades are made across a stable scene. Based on data obtained using this approach, we suggest that remapping in the lateral intraparietal area is sufficient to play a role in maintaining visual stability across saccades, whereas in the frontal eye field, remapped activity carries information that affects future saccadic choices and, in a separate subset of neurons, is used to maintain a map of locations in the scene that have been previously fixated.
Collapse
Affiliation(s)
- James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yelda Alkan
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
34
|
Gale DJ, Areshenkoff CN, Honda C, Johnsrude IS, Flanagan JR, Gallivan JP. Motor Planning Modulates Neural Activity Patterns in Early Human Auditory Cortex. Cereb Cortex 2021; 31:2952-2967. [PMID: 33511976 PMCID: PMC8107793 DOI: 10.1093/cercor/bhaa403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
It is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed 2 human functional magnetic resonance imaging studies involving separate delayed movement tasks and focused on premovement neural activity in early auditory cortex, given the area's direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1 and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is encoded in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.
Collapse
Affiliation(s)
- Daniel J Gale
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Claire Honda
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Ingrid S Johnsrude
- Department of Psychology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
- School of Communication Sciences and Disorders, University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
35
|
Li HH, Pan J, Carrasco M. Different computations underlie overt presaccadic and covert spatial attention. Nat Hum Behav 2021; 5:1418-1431. [PMID: 33875838 DOI: 10.1038/s41562-021-01099-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Perception and action are tightly coupled: visual responses at the saccade target are enhanced right before saccade onset. This phenomenon, presaccadic attention, is a form of overt attention-deployment of visual attention with concurrent eye movements. Presaccadic attention is well-documented, but its underlying computational process remains unknown. This is in stark contrast to covert attention-deployment of visual attention without concurrent eye movements-for which the computational processes are well characterized by a normalization model. Here, a series of psychophysical experiments reveal that presaccadic attention modulates visual performance only via response gain changes. A response gain change was observed even when attention field size increased, violating the predictions of a normalization model of attention. Our empirical results and model comparisons reveal that the perceptual modulations by overt presaccadic and covert spatial attention are mediated through different computations.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY, USA. .,Center for Neural Science, New York University, New York, NY, USA.
| | - Jasmine Pan
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
36
|
Cowley BR, Snyder AC, Acar K, Williamson RC, Yu BM, Smith MA. Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex. Neuron 2020; 108:551-567.e8. [PMID: 32810433 PMCID: PMC7822647 DOI: 10.1016/j.neuron.2020.07.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/15/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
An animal's decision depends not only on incoming sensory evidence but also on its fluctuating internal state. This state embodies multiple cognitive factors, such as arousal and fatigue, but it is unclear how these factors influence the neural processes that encode sensory stimuli and form a decision. We discovered that, unprompted by task conditions, animals slowly shifted their likelihood of detecting stimulus changes over the timescale of tens of minutes. Neural population activity from visual area V4, as well as from prefrontal cortex, slowly drifted together with these behavioral fluctuations. We found that this slow drift, rather than altering the encoding of the sensory stimulus, acted as an impulsivity signal, overriding sensory evidence to dictate the final decision. Overall, this work uncovers an internal state embedded in population activity across multiple brain areas and sheds further light on how internal states contribute to the decision-making process.
Collapse
Affiliation(s)
- Benjamin R Cowley
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Adam C Snyder
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
| | - Katerina Acar
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ryan C Williamson
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Byron M Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Matthew A Smith
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
37
|
Gallivan JP, Chapman CS, Gale DJ, Flanagan JR, Culham JC. Selective Modulation of Early Visual Cortical Activity by Movement Intention. Cereb Cortex 2020; 29:4662-4678. [PMID: 30668674 DOI: 10.1093/cercor/bhy345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded-prior to movement-from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Craig S Chapman
- Faculty of Physical Education and Recreation, University of Alberta, Alberta, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Renton AI, Painter DR, Mattingley JB. Differential Deployment of Visual Attention During Interactive Approach and Avoidance Behavior. Cereb Cortex 2020; 29:2366-2383. [PMID: 29750259 DOI: 10.1093/cercor/bhy105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/23/2023] Open
Abstract
The ability to coordinate approach and avoidance actions in dynamic environments represents the boundary between extinction and the continued survival of many animal species. It is therefore crucial that sensory systems allocate limited attentional resources to the most relevant information to facilitate planning and execution of appropriate actions. Prominent theories of how attention regulates visual processing focus on the distinction between behaviorally relevant and irrelevant visual inputs. To date, however, no study has directly compared the deployment of attention to visual inputs relevant for approach and avoidance behaviors, which naturally occur in dynamic, interactive environments. In two experiments, we combined electroencephalography, frequency tagging, and eye gaze measures to investigate whether the deployment of visual selective attention differs for items relevant for approach and avoidance actions. Participants maneuvered a cursor to approach and avoid contact with moving items in a continuous interactive task. The results indicated that while the approach and avoidance tasks recruited equivalent attentional resources overall, attentional biases were directed toward task-relevant items during approach, and away from task-relevant items during avoidance. We conclude that the deployment of visual attention is guided not only by relevance to a behavioral goal, but also by the nature of that goal.
Collapse
Affiliation(s)
- Angela I Renton
- School of Psychology, The University of Queensland, St Lucia, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - David R Painter
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St Lucia, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
39
|
Redondo B, Vera J, Molina R, Davies LN, Jiménez R. Accommodative dynamics and attention: the influence of manipulating attentional capacity on accommodative lag and variability. Ophthalmic Physiol Opt 2020; 40:510-518. [DOI: 10.1111/opo.12690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/31/2023]
Affiliation(s)
| | - Jesús Vera
- Department of Optics University of Granada Granada Spain
| | - Rubén Molina
- Department of Optics University of Granada Granada Spain
| | | | | |
Collapse
|
40
|
Attention can be subdivided into neurobiological components corresponding to distinct behavioral effects. Proc Natl Acad Sci U S A 2019; 116:26187-26194. [PMID: 31871179 DOI: 10.1073/pnas.1902286116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Attention is a common but highly complex term associated with a large number of distinct behavioral and perceptual phenomena. In the brain, attention-related changes in neuronal activity are observed in widespread structures. The many distinct behavioral and neuronal phenomena related to attention suggest that it might be subdivided into components corresponding to distinct biological mechanisms. Recent neurophysiological studies in monkeys have isolated behavioral changes related to attention along the 2 indices of signal detection theory and found that these 2 behavioral changes are associated with distinct neuronal changes in different brain areas. These results support the view that attention is made up of distinct neurobiological mechanisms.
Collapse
|
41
|
Hu F, Kamigaki T, Zhang Z, Zhang S, Dan U, Dan Y. Prefrontal Corticotectal Neurons Enhance Visual Processing through the Superior Colliculus and Pulvinar Thalamus. Neuron 2019; 104:1141-1152.e4. [PMID: 31668485 DOI: 10.1016/j.neuron.2019.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
Top-down modulation of visual processing is mediated in part by direct prefrontal to visual cortical projections. Here, we show that the mouse cingulate cortex (Cg) regulates visual processing not only through corticocortical neurons projecting to the visual cortex but also through corticotectal neurons projecting subcortically. Bidirectional optogenetic manipulation demonstrated a prominent contribution of Cg corticotectal neurons to visually guided behavior, which is mediated by their collateral projections to both the motor-related layers of the superior colliculus (SC) and the lateral posterior nucleus of the thalamus (LP, analogous to the primate pulvinar). Whereas the Cg innervates the anterior LP (LPa), the SC innervates the posterior LP (LPp). Activating each stage of the Cg→SC→LPp or the Cg→LPa pathway strongly enhanced visual performance of the mouse and the sensory responses of visual cortical neurons. These results delineate two subcortical pathways by which a subtype of prefrontal pyramidal neurons exerts a powerful top-down influence on visual processing. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Fei Hu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tsukasa Kamigaki
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhe Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Siyu Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Usan Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Jonikaitis D, Moore T. The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Curr Opin Psychol 2019; 29:126-134. [PMID: 30825836 DOI: 10.1016/j.copsyc.2019.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
Abstract
Visual attention, visual working memory, and gaze control are basic functions that all select a subset of visual input to guide immediate or subsequent behavior. In this review, we focus on the relationship between these three functions and describe evidence, both at the behavioral and neural circuit levels that they are heavily interdependent. We start with the demonstration that gaze control - or saccade preparation in particular - leads to spatial attention. Next, we show that spatial attention and working memory interact at the behavioral level and rely on a common set of neural mechanisms. Next, we discuss the evidence that gaze control mechanisms are involved in spatial working memory. Lastly, we highlight the links between gaze control and non-spatial memory.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
43
|
Ruff DA, Cohen MR. Simultaneous multi-area recordings suggest that attention improves performance by reshaping stimulus representations. Nat Neurosci 2019; 22:1669-1676. [PMID: 31477898 PMCID: PMC6760994 DOI: 10.1038/s41593-019-0477-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022]
Abstract
Visual attention dramatically improves individuals' ability to see and modulates the responses of neurons in every known visual and oculomotor area, but whether such modulations can account for perceptual improvements is unclear. We measured the relationship between populations of visual neurons, oculomotor neurons and behavior during detection and discrimination tasks. We found that neither of the two prominent hypothesized neuronal mechanisms underlying attention (which concern changes in information coding and the way sensory information is read out) provide a satisfying account of the observed behavioral improvements. Instead, our results are more consistent with the hypothesis that attention reshapes the representation of attended stimuli to more effectively influence behavior. Our results suggest a path toward understanding the neural underpinnings of perception and cognition in health and disease by analyzing neuronal responses in ways that are constrained by behavior and interactions between brain areas.
Collapse
Affiliation(s)
- Douglas A Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Marlene R Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Sagar V, Sengupta R, Sridharan D. Dissociable sensitivity and bias mechanisms mediate behavioral effects of exogenous attention. Sci Rep 2019; 9:12657. [PMID: 31477747 PMCID: PMC6718663 DOI: 10.1038/s41598-019-42759-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Attention can be directed endogenously, based on task-relevant goals, or captured exogenously, by salient stimuli. While recent studies have shown that endogenous attention can facilitate behavior through dissociable sensitivity (sensory) and choice bias (decisional) mechanisms, it is unknown if exogenous attention also operates through dissociable sensitivity and bias mechanisms. We tested human participants on a multialternative change detection task with exogenous attention cues, which preceded or followed change events in close temporal proximity. Analyzing participants’ behavior with a multidimensional signal detection model revealed clear dissociations between exogenous cueing effects on sensitivity and bias. While sensitivity was, overall, lower at the cued location compared to other locations, bias was highest at the cued location. With an appropriately designed post-cue control condition, we discovered that the attentional effect of exogenous pre-cueing was to enhance sensitivity proximal to the cue. In contrast, exogenous attention enhanced bias even for distal stimuli in the cued hemifield. Reaction time effects of exogenous cueing could be parsimoniously explained with a diffusion-decision model, in which drift rate was determined by independent contributions from sensitivity and bias at each location. The results suggest a mechanistic schema of how exogenous attention engages dissociable sensitivity and bias mechanisms to shape behavior.
Collapse
Affiliation(s)
- Vishak Sagar
- Centre for Neuroscience, Indian Institute of Science, C. V. Raman Avenue, Bangalore, 560012, India
| | - Ranit Sengupta
- Centre for Neuroscience, Indian Institute of Science, C. V. Raman Avenue, Bangalore, 560012, India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, C. V. Raman Avenue, Bangalore, 560012, India.
| |
Collapse
|
45
|
Pierce JE, Saj A, Vuilleumier P. Differential parietal activations for spatial remapping and saccadic control in a visual memory task. Neuropsychologia 2019; 131:129-138. [DOI: 10.1016/j.neuropsychologia.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
|
46
|
Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 2019; 224:2631-2660. [DOI: 10.1007/s00429-019-01907-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
|
47
|
Pettine WW, Steinmetz NA, Moore T. Laminar segregation of sensory coding and behavioral readout in macaque V4. Proc Natl Acad Sci U S A 2019; 116:14749-14754. [PMID: 31249141 PMCID: PMC6642347 DOI: 10.1073/pnas.1819398116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in sensory areas of the neocortex are known to represent information both about sensory stimuli and behavioral state, but how these 2 disparate signals are integrated across cortical layers is poorly understood. To study this issue, we measured the coding of visual stimulus orientation and of behavioral state by neurons within superficial and deep layers of area V4 in monkeys while they covertly attended or prepared eye movements to visual stimuli. We show that whereas single neurons and neuronal populations in the superficial layers conveyed more information about the orientation of visual stimuli than neurons in deep layers, the opposite was true of information about the behavioral relevance of those stimuli. In particular, deep layer neurons encoded greater information about the direction of planned eye movements than superficial neurons. These results suggest a division of labor between cortical layers in the coding of visual input and visually guided behavior.
Collapse
Affiliation(s)
- Warren W Pettine
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas A Steinmetz
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Tirin Moore
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
48
|
Banerjee S, Grover S, Ganesh S, Sridharan D. Sensory and decisional components of endogenous attention are dissociable. J Neurophysiol 2019; 122:1538-1554. [PMID: 31268805 PMCID: PMC6843089 DOI: 10.1152/jn.00257.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endogenous cueing of attention enhances sensory processing of the attended stimulus (perceptual sensitivity) and prioritizes information from the attended location for guiding behavioral decisions (spatial choice bias). Here, we test whether sensitivity and bias effects of endogenous spatial attention are under the control of common or distinct mechanisms. Human observers performed a multialternative visuospatial attention task with probabilistic spatial cues. Observers' behavioral choices were analyzed with a recently developed multidimensional signal detection model (the m-ADC model). The model effectively decoupled the effects of spatial cueing on sensitivity from those on spatial bias and revealed striking dissociations between them. Sensitivity was highest at the cued location and not significantly different among uncued locations, suggesting a spotlight-like allocation of sensory resources at the cued location. On the other hand, bias varied systematically with cue validity, suggesting a graded allocation of decisional priority across locations. Cueing-induced modulations of sensitivity and bias were uncorrelated within and across subjects. Bias, but not sensitivity, correlated with key metrics of prioritized decision-making, including reaction times and decision optimality indices. In addition, we developed a novel metric, differential risk curvature, for distinguishing bias effects of attention from those of signal expectation. Differential risk curvature correlated selectively with m-ADC model estimates of bias but not with estimates of sensitivity. Our results reveal dissociable effects of endogenous attention on perceptual sensitivity and choice bias in a multialternative choice task and motivate the search for the distinct neural correlates of each.NEW & NOTEWORTHY Attention is often studied as a unitary phenomenon. Yet, attention can both enhance the perception of important stimuli (sensitivity) and prioritize such stimuli for decision-making (bias). Employing a multialternative spatial attention task with probabilistic cueing, we show that attention affects sensitivity and bias through dissociable mechanisms. Specifically, the effects on sensitivity alone match the notion of an attentional "spotlight." Our behavioral model enables quantifying component processes of attention, and identifying their respective neural correlates.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
49
|
Salinas E, Steinberg BR, Sussman LA, Fry SM, Hauser CK, Anderson DD, Stanford TR. Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. eLife 2019; 8:46359. [PMID: 31225794 PMCID: PMC6645714 DOI: 10.7554/elife.46359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
In the antisaccade task, which is considered a sensitive assay of cognitive function, a salient visual cue appears and the participant must look away from it. This requires sensory, motor-planning, and cognitive neural mechanisms, but what are their unique contributions to performance, and when exactly are they engaged? Here, by manipulating task urgency, we generate a psychophysical curve that tracks the evolution of the saccadic choice process with millisecond precision, and resolve the distinct contributions of reflexive (exogenous) and voluntary (endogenous) perceptual mechanisms to antisaccade performance over time. Both progress extremely rapidly, the former driving the eyes toward the cue early on (∼100 ms after cue onset) and the latter directing them away from the cue ∼40 ms later. The behavioral and modeling results provide a detailed, dynamical characterization of attentional and oculomotor capture that is not only qualitatively consistent across participants, but also indicative of their individual perceptual capacities.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Benjamin R Steinberg
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Lauren A Sussman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Sophia M Fry
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Christopher K Hauser
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Denise D Anderson
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
50
|
Jonikaitis D, Dhawan S, Deubel H. Saccade selection and inhibition: motor and attentional components. J Neurophysiol 2019; 121:1368-1380. [PMID: 30649975 DOI: 10.1152/jn.00726.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor responses are fundamentally spatial in their function and neural organization. However, studies of inhibitory motor control, focused on global stopping of all actions, have ignored whether inhibitory control can be exercised selectively for specific actions. We used a new approach to elicit and measure motor inhibition by asking human participants to either look at (select) or avoid looking at (inhibit) a location in space. We found that instructing a location to be avoided resulted in an inhibitory bias specific to that location. When compared with the facilitatory bias observed in the Look task, it differed significantly in both its spatiotemporal dynamics and its modulation of attentional processing. While action selection was evident in oculomotor system and interacted with attentional processing, action inhibition was evident mainly in the oculomotor system. Our findings suggest that action inhibition is implemented by spatially specific mechanisms that are separate from action selection. NEW & NOTEWORTHY We show that cognitive control of saccadic responses evokes separable action selection and inhibition processes. Both action selection and inhibition are represented in the saccadic system, but only action selection interacts with the attentional system.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München Munich, Germany.,Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine , Stanford, California
| | - Saurabh Dhawan
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|