1
|
Hu Z, Xiao X, Zhang Z, Li M. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry 2019; 24:1400-1414. [PMID: 31138894 DOI: 10.1038/s41380-019-0438-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/31/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
Many neuropsychiatric and neurodevelopmental disorders commonly share genetic risk factors. To date, the mechanisms driving the pathogenesis of these disorders, particularly how genetic variations affect the function of risk genes and contribute to disease symptoms, remain largely unknown. Neurexins are a family of synaptic adhesion molecules, which play important roles in the formation and establishment of synaptic structure, as well as maintenance of synaptic function. Accumulating genomic findings reveal that genetic variations within genes encoding neurexins are associated with a variety of psychiatric conditions such as schizophrenia, autism spectrum disorder, and some developmental abnormalities. In this review, we focus on NRXN1, one of the most compelling psychiatric risk genes of the neurexin family. We performed a comprehensive survey and analysis of current genetic and molecular data including both common and rare alleles within NRXN1 associated with psychiatric illnesses, thus providing insights into the genetic risk conferred by NRXN1. We also summarized the neurobiological evidences, supporting the function of NRXN1 and its protein products in synaptic formation, organization, transmission and plasticity, as well as disease-relevant behaviors, and assessed the mechanistic link between the mutations of NRXN1 and synaptic and behavioral pathology in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Rodríguez-Ramos Á, Gámez-Del-Estal MM, Porta-de-la-Riva M, Cerón J, Ruiz-Rubio M. Impaired Dopamine-Dependent Locomotory Behavior of C. elegans Neuroligin Mutants Depends on the Catechol-O-Methyltransferase COMT-4. Behav Genet 2017; 47:596-608. [PMID: 28879499 DOI: 10.1007/s10519-017-9868-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022]
Abstract
Neurexins and neuroligins are neuronal membrane adhesion molecules that have been involved in neuropsychiatric and neurodevelopmental disorders. The nrx-1 and nlg-1 genes of Caenorhabditis elegans encode NRX-1 and NLG-1, orthologue proteins of human neurexins and neuroligins, respectively. Dopaminergic and serotoninergic signalling control the locomotory rate of the nematode. When well-fed animals are transferred to a plate with food (bacterial lawn), they reduce the locomotory rate. This behavior, which depends on dopamine, is known as basal slowing response (BSR). Alternatively, when food-deprived animals are moved to a plate with a bacterial lawn, further decrease their locomotory rate. This behavior, known as enhanced slowing response (ESR), is serotonin dependent. C. elegans nlg-1-deficient mutants are impaired in BSR and ESR. Here we report that nrx-1-deficient mutants were defective in ESR, but not in BSR. The nrx-1;nlg-1 double mutant was impaired in both behaviors. Interestingly, the nlg-1 mutants upregulate the expression of comt-4 which encodes an enzyme with putative catechol-O-methyltransferase activity involved in dopamine degradation. Our study also shows that comt-4(RNAi) in nlg-1-deficient mutants rescues the wild type phenotypes of BSR and ESR. On the other hand, comt-4(RNAi) in nlg-1-deficient mutants also recovers, at least partially, the gentle touch response and the pharyngeal pumping rate that were impaired in these mutants. These latter behaviors are dopamine and serotonin dependent, respectively. Based on these results we propose a model for the neuroligin function in modulating the dopamine-dependent locomotory behavior in the nematode.
Collapse
Affiliation(s)
- Ángel Rodríguez-Ramos
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain
| | - M Mar Gámez-Del-Estal
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain
| | | | - Julián Cerón
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manuel Ruiz-Rubio
- Department of Genetics, University of Córdoba, Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain.
| |
Collapse
|