1
|
Zhang Y, Lyu Y, Chen L, Cao K, Chen J, He C, Lyu X, Jiang Y, Xiang J, Liu B, Wu C. Exploring the Prognosis-Related Genetic Variation in Gastric Cancer Based on mGWAS. Int J Mol Sci 2023; 24:15259. [PMID: 37894938 PMCID: PMC10607287 DOI: 10.3390/ijms242015259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The use of metabolome genome-wide association studies (mGWAS) has been shown to be effective in identifying functional genes in complex diseases. While mGWAS has been applied to biomedical and pharmaceutical studies, its potential in predicting gastric cancer prognosis has yet to be explored. This study aims to address this gap and provide insights into the genetic basis of GC survival, as well as identify vital regulatory pathways in GC cell progression. Genome-wide association analysis of plasma metabolites related to gastric cancer prognosis was performed based on the Generalized Linear Model (GLM). We used a log-rank test, LASSO regression, multivariate Cox regression, GO enrichment analysis, and the Cytoscape software to visualize the complex regulatory network of genes and metabolites and explored in-depth genetic variation in gastric cancer prognosis based on mGWAS. We found 32 genetic variation loci significantly associated with GC survival-related metabolites, corresponding to seven genes, VENTX, PCDH 7, JAKMIP1, MIR202HG, MIR378D1, LINC02472, and LINC02310. Furthermore, this study identified 722 Single nucleotide polymorphism (SNP) sites, suggesting an association with GC prognosis-related metabolites, corresponding to 206 genes. These 206 possible functional genes for gastric cancer prognosis were mainly involved in cellular signaling molecules related to cellular components, which are mainly involved in the growth and development of the body and neurological regulatory functions related to the body. The expression of 23 of these genes was shown to be associated with survival outcome in gastric cancer patients in The Cancer Genome Atlas (TCGA) database. Based on the genome-wide association analysis of prognosis-related metabolites in gastric cancer, we suggest that gastric cancer survival-related genes may influence the proliferation and infiltration of gastric cancer cells, which provides a new idea to resolve the complex regulatory network of gastric cancer prognosis.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yanping Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Liangping Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Kang Cao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jingwen Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Chenzhou He
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Xuejie Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Baoying Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Chuancheng Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
2
|
Exosomes Derived from Nerve Stem Cells Loaded with FTY720 Promote the Recovery after Spinal Cord Injury in Rats by PTEN/AKT Signal Pathway. J Immunol Res 2021; 2021:8100298. [PMID: 34337080 PMCID: PMC8294984 DOI: 10.1155/2021/8100298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Spinal cord injury (SCI) remains a challenge owing to limited therapies. The exosome of neural stem cells (NSCs-Exos) and FTY720 transplantation could improve SCI effectively. However, the effect and mechanism of NSCs-Exos combined with FTY720 (FTY720-NSCs-Exos) transplantation in the treatment of SCI are not fully understood. Methods Sprague Dawley rats (8-week-old) were used to establish the SCI model, followed by the treatment of NSCs-Exos, FTY720, and FTY720-NSCs-Exos. The effect of FTY720, NSCs-Exos, and FTY720-NSCs-Exos combination treatment on hindlimb function, pathological changes, apoptosis activity, and the expression of spinal edema-related proteins and apoptosis-related proteins in SCI models were investigated by BBB scoring, HE staining, TUNEL staining and immunohistochemistry, and Western blotting. Meanwhile, the effect of these treatments on spinal cord microvascular endothelial cells (SCMECs) was detected under hypoxic circumstance. Results Our results found that FTY720-NSCs-Exos could alleviate pathological alterations and ameliorate the hindlimb function and oxygen insufficiency in model mice after SCI. In addition, exosomes could ameliorate the morphology of neurons, reduce inflammatory infiltration and edema, decrease the expression of Bax and AQP-4, upregulate the expression of claudin-5 and Bcl-2, and inhibit cell apoptosis. At the same time, in vitro experiments showed that FTY720-NSCs-Exos could protect the barrier of SCMECs under hypoxic circumstance, and the mechanism is related to PTEN/AKT pathway. Conclusion FTY720-NSCs-Exos therapy displayed a positive therapeutic effect on SCI by regulating PTEN/AKT pathway and offered a new therapy for SCI.
Collapse
|
3
|
Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats. Stem Cell Res Ther 2021; 12:117. [PMID: 33579361 PMCID: PMC7879635 DOI: 10.1186/s13287-021-02148-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although exosomes, as byproducts of human umbilical cord mesenchymal stem cells (hUC-MSCs), have been demonstrated to be an effective therapy for traumatic spinal cord injury (SCI), their mechanism of action remains unclear. Methods We designed and performed this study to determine whether exosomes attenuate the lesion size of SCI by ameliorating neuronal injury induced by a secondary inflammatory storm and promoting neurite outgrowth. We determined the absolute levels of all exosomal miRNAs and investigated the potential mechanisms of action of miR-199a-3p/145-5p in inducing neurite outgrowth in vivo and in vitro. Results miR-199a-3p/145-5p, which are relatively highly expressed miRNAs in exosomes, promoted PC12 cell differentiation suppressed by lipopolysaccharide (LPS) in vitro through modulation of the NGF/TrkA pathway. We also demonstrated that Cblb was a direct target of miR-199a-3p and that Cbl was a direct target of miR-145-5p. Cblb and Cbl gene knockdown resulted in significantly decreased TrkA ubiquitination levels, subsequently activating the NGF/TrkA downstream pathways Akt and Erk. Conversely, overexpression of Cblb and Cbl was associated with significantly increased TrkA ubiquitination level, subsequently inactivating the NGF/TrkA downstream pathways Akt and Erk. Western blot and coimmunoprecipitation assays confirmed the direct interaction between TrkA and Cblb and TrkA and Cbl. In an in vivo experiment, exosomal miR-199a-3p/145-5p was found to upregulate TrkA expression at the lesion site and also promote locomotor function in SCI rats. Conclusions In summary, our study showed that exosomes transferring miR-199a-3p/145-5p into neurons in SCI rats affected TrkA ubiquitination and promoted the NGF/TrkA signaling pathway, indicating that hUC-MSC-derived exosomes may be a promising treatment strategy for SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02148-5.
Collapse
|
4
|
Iung LHDS, Mulder HA, Neves HHDR, Carvalheiro R. Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics 2018; 19:619. [PMID: 30115034 PMCID: PMC6097312 DOI: 10.1186/s12864-018-5003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In livestock, residual variance has been studied because of the interest to improve uniformity of production. Several studies have provided evidence that residual variance is partially under genetic control; however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic regions associated with within-family residual variance of yearling weight (YW; N = 423) in Nellore bulls with high density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic correlation between mean and residual variance (rmv ≠ 0) to obtain deregressed EBV for mean (dEBVm) and residual variance (dEBVv); and a DHGLM assuming rmv = 0 to obtain two alternative response variables for residual variance, dEBVv_r0 and log-transformed variance of estimated residuals (ln_[Formula: see text]). RESULTS The dEBVm and dEBVv were highly correlated, resulting in common regions associated with mean and residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects on the variance beyond scale effects. More independent association results between mean and residual variance were obtained when null rmv was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a strong association (Bayes Factor > 20) with dEBVv and ln_[Formula: see text], respectively, only suggestive signals were found for dEBVv_r0. All overlapping 1-Mb windows among top 20 between dEBVm and dEBVv were previously associated with growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation. CONCLUSIONS It is necessary to use a strategy like assuming null rmv to obtain genomic regions associated with uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response variable was found, we recommend consider different response variables to study uniformity to increase evidence on candidate regions and biological mechanisms behind it.
Collapse
Affiliation(s)
- Laiza Helena de Souza Iung
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| | - Herman Arend Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| |
Collapse
|