1
|
Gant KL, Jambor AN, Li Z, Rentchler EC, Weisman P, Li L, Patankar MS, Campagnola PJ. Evaluation of Collagen Alterations in Early Precursor Lesions of High Grade Serous Ovarian Cancer by Second Harmonic Generation Microscopy and Mass Spectrometry. Cancers (Basel) 2021; 13:cancers13112794. [PMID: 34199725 PMCID: PMC8200041 DOI: 10.3390/cancers13112794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The collagen architecture in the extracellular matrix (ECM) is highly remodeled in high grade serous ovarian cancer (HGSOC). Many of these tumors begin in the fallopian tubes (FT) before metastasizing to the ovaries and it is important to study ECM alterations in carcinogenesis. Here, we used Second Harmonic Generation (SHG) microscopy to classify changes in the collagen fiber morphology in normal FT, and precursor pure p53 signatures and serous tubal intraepithelial carcinoma (STICs) in tissues with no HGSOC. Using a machine learning approach based on image features, we were able to discriminate the tissue groups with good classification accuracy. We additionally performed mass spectrometry analysis of normal and HGSOC tissues to associate the differential expression of collagen isoforms with fiber morphology alterations. This work provides new insights into ECM remodeling in early stage HGSOC and suggests the combined use of SHG microscopy and mass spectrometry as a new diagnostic/prognostic approach. Abstract Background: The collagen architecture in high grade serous ovarian cancer (HGSOC) is highly remodeled compared to the normal ovary and the fallopian tubes (FT). We previously used Second Harmonic Generation (SHG) microscopy and machine learning to classify the changes in collagen fiber morphology occurring in serous tubal intraepithelial carcinoma (STIC) lesions that are concurrent with HGSOC. We now extend these studies to examine collagen remodeling in pure p53 signatures, STICs and normal regions in tissues that have no concurrent HGSOC. This is an important distinction as high-grade disease can result in distant collagen changes through a field effect mechanism. Methods: We trained a linear discriminant model based on SHG texture and image features as a classifier to discriminate the tissue groups. We additionally performed mass spectrometry analysis of normal and HGSOC tissues to associate the differential expression of collagen isoforms with collagen fiber morphology alterations. Results: We quantified the differences in the collagen architecture between normal tissue and the precursors with good classification accuracy. Through proteomic analysis, we identified the downregulation of single α-chains including those for Col I and III, where these results are consistent with our previous SHG-based supramolecular analyses. Conclusion: This work provides new insights into ECM remodeling in early ovarian cancer and suggests the combined use of SHG microscopy and mass spectrometry as a new diagnostic/prognostic approach.
Collapse
Affiliation(s)
- Kristal L. Gant
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.N.J.); (E.C.R.)
| | - Alexander N. Jambor
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.N.J.); (E.C.R.)
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Z.L.); (L.L.)
| | - Eric C. Rentchler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.N.J.); (E.C.R.)
| | - Paul Weisman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Z.L.); (L.L.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (M.S.P.); (P.J.C.)
| | - Paul J. Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.N.J.); (E.C.R.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (M.S.P.); (P.J.C.)
| |
Collapse
|
2
|
James DS, Campagnola PJ. Recent Advancements in Optical Harmonic Generation Microscopy: Applications and Perspectives. BME FRONTIERS 2021; 2021:3973857. [PMID: 37849910 PMCID: PMC10521653 DOI: 10.34133/2021/3973857] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/14/2020] [Indexed: 10/19/2023] Open
Abstract
Second harmonic generation (SHG) and third harmonic generation (THG) microscopies have emerged as powerful imaging modalities to examine structural properties of a wide range of biological tissues. Although SHG and THG arise from very different contrast mechanisms, the two are complimentary and can often be collected simultaneously using a modified multiphoton microscope. In this review, we discuss the needed instrumentation for these modalities as well as the underlying theoretical principles of SHG and THG in tissue and describe how these can be leveraged to extract unique structural information. We provide an overview of recent advances showing how SHG microscopy has been used to evaluate collagen alterations in the extracellular matrix and how this has been used to advance our knowledge of cancers, fibroses, and the cornea, as well as in tissue engineering applications. Specific examples using polarization-resolved approaches and machine learning algorithms are highlighted. Similarly, we review how THG has enabled developmental biology and skin cancer studies due to its sensitivity to changes in refractive index, which are ubiquitous in all cell and tissue assemblies. Lastly, we offer perspectives and outlooks on future directions of SHG and THG microscopies and present unresolved questions, especially in terms of overall miniaturization and the development of microendoscopy instrumentation.
Collapse
Affiliation(s)
- Darian S. James
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Paul J. Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison, WI 53706, USA
| |
Collapse
|
3
|
Mercatelli R, Mattana S, Capozzoli L, Ratto F, Rossi F, Pini R, Fioretto D, Pavone FS, Caponi S, Cicchi R. Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies. Commun Biol 2019; 2:117. [PMID: 30937399 PMCID: PMC6435656 DOI: 10.1038/s42003-019-0357-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/05/2019] [Indexed: 12/18/2022] Open
Abstract
In every biological tissue, morphological and topological properties strongly affect its mechanical features and behaviour, so that ultrastructure, composition and mechanical parameters are intimately connected. Overall, it is their correct interplay that guarantees the tissue functionality. The development of experimental methods able to correlate these properties would open new opportunities both in the biological and the biomedical fields. Here, we report a correlative study intended to map supramolecular morphology, biochemical composition and viscoelastic parameters of collagen by all-optical microscopies. In particular, using human corneal tissue as a benchmark, we correlate Second-Harmonic Generation maps with mechanical and biochemical imaging obtained by Brillouin and Raman micro-spectroscopy. The study highlights how subtle variations in supramolecular organization originate the peculiar mechanical behavior of different subtypes of corneal lamellae. The presented methodology paves the way to the non-invasive assessment of tissue morpho-mechanics in biological as well as synthetic materials.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Sara Mattana
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, I-06123 Perugia, Italy
| | - Laura Capozzoli
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
- Center of Electron Microscopy “Laura Bonzi” (Ce.M.E), Institute of Chemistry of Organometallic Compounds, National Research Council (CNR-ICCOM), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Francesca Rossi
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Roberto Pini
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, I-06123 Perugia, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Via Alessandro Pascoli, I-06123 Perugia, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via Giovanni Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Silvia Caponi
- Institute of Materials, National Research Council (CNR-IOM), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Buttner P, Galli R, Husser D, Bollmann A. Label-free Imaging of Myocardial Remodeling in Atrial Fibrillation Using Nonlinear Optical Microscopy: A Feasibility Study. J Atr Fibrillation 2018; 10:1644. [PMID: 29988238 DOI: 10.4022/jafib.1644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/21/2023]
Abstract
Atrial fibrillation, characterized by rapid disorganized electrical activation of myocardium, is caused by and accompanied by remodeling of myocardial tissue. We applied nonlinear optical microscopy (NLOM) to visualize typical myocardial features and atrial fibrillation effects in order to test anon-destructive imaging technology that in principle can be applied in vivo.Coherent anti-Stokes Raman scattering, endogenous two-photon excited fluorescence, and second harmonic generation were used to inspect unstained human atrial myocardium from three patients who underwent surgical Cox-MAZE procedure with amputation of left atrial appendage. Using NLOM techniques, we collected detailrich pictures of unstained tissue that enable comprehensive characterization of myocardial characteristics like myocyte structure, collagen and lipofuscin deposition, intercalating disc width, and fatty degradation. Development of in vivo application of the NLOM technique may represent a revolutionary approach in characterizing atrial fibrillation associated myocardial remodeling with important implications for therapy individualization and monitoring.
Collapse
Affiliation(s)
- Petra Buttner
- Department of Electrophysiology, Heart Center Leipzig, Strumpellstrabe 39, 04289 Leipzig, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrabe 74, 01307 Dresden, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, Strumpellstrabe 39, 04289 Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Strumpellstrabe 39, 04289 Leipzig, Germany
| |
Collapse
|
5
|
Pinkert MA, Salkowski LR, Keely PJ, Hall TJ, Block WF, Eliceiri KW. Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 2018; 5:010901. [PMID: 29392158 PMCID: PMC5777512 DOI: 10.1117/1.jmi.5.1.010901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide and ranks second in terms of overall cancer deaths. One of the difficulties associated with treating breast cancer is that it is a heterogeneous disease with variations in benign and pathologic tissue composition, which contributes to disease development, progression, and treatment response. Many of these phenotypes are uncharacterized and their presence is difficult to detect, in part due to the sparsity of methods to correlate information between the cellular microscale and the whole-breast macroscale. Quantitative multiscale imaging of the breast is an emerging field concerned with the development of imaging technology that can characterize anatomic, functional, and molecular information across different resolutions and fields of view. It involves a diverse collection of imaging modalities, which touch large sections of the breast imaging research community. Prospective studies have shown promising results, but there are several challenges, ranging from basic physics and engineering to data processing and quantification, that must be met to bring the field to maturity. This paper presents some of the challenges that investigators face, reviews currently used multiscale imaging methods for preclinical imaging, and discusses the potential of these methods for clinical breast imaging.
Collapse
Affiliation(s)
- Michael A. Pinkert
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Lonie R. Salkowski
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
| | - Patricia J. Keely
- University of Wisconsin–Madison, Department of Cell and Regenerative Biology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Timothy J. Hall
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Walter F. Block
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
6
|
Mostaço-Guidolin L, Rosin NL, Hackett TL. Imaging Collagen in Scar Tissue: Developments in Second Harmonic Generation Microscopy for Biomedical Applications. Int J Mol Sci 2017; 18:E1772. [PMID: 28809791 PMCID: PMC5578161 DOI: 10.3390/ijms18081772] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023] Open
Abstract
The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation.
Collapse
Affiliation(s)
- Leila Mostaço-Guidolin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| | - Nicole L Rosin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|