1
|
Berkowitz BA, Podolsky RH, Farrell B, Lee H, Trepanier C, Berri AM, Dernay K, Graffice E, Shafie-Khorassani F, Kern TS, Roberts R. D-cis-Diltiazem Can Produce Oxidative Stress in Healthy Depolarized Rods In Vivo. Invest Ophthalmol Vis Sci 2019; 59:2999-3010. [PMID: 30025125 PMCID: PMC5995482 DOI: 10.1167/iovs.18-23829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose New perspectives are needed to understand decades of contradictory reports on the neuroprotective effects of the Cav1.2 L-type calcium channel blocker d-cis-diltiazem in retinitis pigmentosa (RP) models. Here, we address, in vivo, the following two knowledge gaps regarding d-cis-diltiazem's actions in the murine outer retina: (1) do normal mouse rods contain d-cis-diltiazem-insensitive Cav1.2 L-type calcium channels? (2) Can d-cis-diltiazem modify the normal rod redox environment? Methods First, transretinal Cav1.2 L-type calcium channels were noninvasively mapped with manganese-enhanced magnetic resonance imaging (MRI) following agonist Bay K 8644 in C57BL/6 (B6) and in Cav1.2 L-type calcium channel BAY K 8644-insensitive mutant B6 mice. Second, d-cis-diltiazem-treated oxidative stress-vulnerable (B6) or -resistant [129S6 (S6)] mice were examined in vivo (QUEnch-assiSTed [QUEST] MRI) and in whole retina ex vivo (lucigenin). Retinal thickness was measured using MRI. Results The following results were observed: (1) manganese uptake patterns in BAY K 8644-treated controls and mutant mice identified in vivo Cav1.2 L-type calcium channels in inner and outer retina; and (2) d-cis-diltiazem induced rod oxidative stress in dark-adapted B6 mice but not in light-adapted B6 mice or dark-adapted S6 mice (QUEST MRI). Oxidative stress in vivo was limited to inferior outer retina in dark-adapted B6 mice approximately 1-hour post d-cis-diltiazem. By approximately 4 hours post, only superior outer retina oxidative stress was observed and whole retinal superoxide production was supernormal. All groups had unremarkable retinal thicknesses. Conclusions D-cis-diltiazem's unexpectedly complex spatiotemporal outer retinal oxidative stress pattern in vivo was dependent on genetic background and rod membrane depolarization, but not apparently dependent on Cav1.2 L-type calcium channels, providing a potential rationale for contradictory results in different RP models.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Benjamin Farrell
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Hojun Lee
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Trepanier
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Timothy S Kern
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
2
|
Papaleonidopoulos V, Kouvaros S, Papatheodoropoulos C. Effects of endogenous and exogenous D1/D5 dopamine receptor activation on LTP in ventral and dorsal CA1 hippocampal synapses. Synapse 2018. [PMID: 29537707 DOI: 10.1002/syn.22033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hippocampus is importantly involved in dopamine-dependent behaviors and dopamine is a significant modulator of synaptic plasticity in the hippocampus. Moreover, the dopaminergic innervation appears to be disproportionally segregated along the hippocampal longitudinal (dorsoventral) axis with unknown consequences for synaptic plasticity. In this study we examined the actions of endogenously released dopamine and the effects of exogenous D1/D5 dopamine receptor agonists on theta-burst stimulation-induced long-term potentiation (LTP) of field excitatory synaptic potential (fEPSP) at Schaffer collateral-CA1 synapses in slices from dorsal (DH) and ventral hippocampus (VH). Furthermore, we quantified D1 receptor mRNA and protein expression levels in DH and VH. We found that blockade of D1/D5 receptors by SCH 23390 (20 μM) significantly reduced the magnitude of LTP in both DH and VH similarly suggesting that dopamine endogenously released during TBS, presumably mimicking low activity of DA neurons, exerts a homogeneous modulation of LTP along the hippocampal long axis. Moderate to high concentrations of the selective partial D1/D5 receptor agonist SKF 38393 (50-150 μM) did not significantly change LTP in either hippocampal segment. However, the full D1 receptor selective agonist SKF 82958 (10 μM) significantly enhanced LTP in VH but not DH. Furthermore, the expression of D1 receptor mRNA and protein was considerably higher in VH compared with DH. These results suggest that the dynamic range of D1/D5 receptor-mediated dopamine effects on LTP may be higher in VH than DH and that VH may be specialized to acquire information about behaviorally relevant strong stimuli signaled by the dopamine system.
Collapse
Affiliation(s)
| | - Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion 26504, Greece
| | | |
Collapse
|
3
|
Abstract
The discovery of place cells provided fundamental insight into the neural basis by which the hippocampus encodes spatial memories and supports navigation and prompted the development of computational models to explain the emergence of their spatial selectively. Many such works posit that input from entorhinal grid cells is critical to the formation of place fields, a prediction that has received mixed experimental support. Potentially reconciling seemingly conflicting findings is recent work indicating that subpopulations of pyramidal neurons are functionally distinct and may be driven to varying degrees by different inputs. Additionally, new studies have demonstrated that hippocampal principal neurons encode a myriad of features extending beyond current position. Here, we highlight recent evidence for how extensive heterogeneity in connectivity and genetic expression could interact with membrane biophysics to enable place cells to encode a diverse range of stimuli. These recent findings highlight the need for more computational models that integrate these heterogeneous features of hippocampal principal neurons.
Collapse
Affiliation(s)
- Caitlin S Mallory
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, United States
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, United States.
| |
Collapse
|
4
|
Prominent differences in sharp waves, ripples and complex spike bursts between the dorsal and the ventral rat hippocampus. Neuroscience 2017; 352:131-143. [DOI: 10.1016/j.neuroscience.2017.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
|