1
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Singh A, Chakraborty J, Pal S, Das D. Site-selective peptide bond hydrolysis and ligation in water by short peptide-based assemblies. Proc Natl Acad Sci U S A 2024; 121:e2321396121. [PMID: 39042686 PMCID: PMC11295027 DOI: 10.1073/pnas.2321396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
The evolution of complex chemical inventory from Darwin's nutrient-rich warm pond necessitated rudimentary yet efficient catalytic folds. Short peptides and their self-organized microstructures, ranging from spherical colloids to amyloidogenic aggregates might have played a crucial role in the emergence of contemporary catalytic entities. However, the question of how short peptide fragments had functions akin to contemporary complex enzymes to catalyze cleavage and formation of highly stable peptide bonds that constitute the backbone of all proteins remains an unresolved yet fundamentally important question in terms of the origins of enzymes. We report short-peptide-based spherical assemblies that demonstrated residue-specific cleavage and formation of peptide bonds of diverse peptide-based substrates under aqueous environment. Despite the short sequence length, the assemblies utilized the synergistic collaboration of four residues which included the catalytic triad of extant serine proteases with a nonproteinogenic amino acid (quinone moiety), to facilitate proteolysis, ligation, and a three-step (hydrolysis-ligation-hydrolysis) cascade. Such short-peptide-based catalytic assemblies argue for their candidacy as the earliest protein folds and open up avenues for biotechnological applications.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
| | - Janardan Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
| | - Sumit Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
| | - Dibyendu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur741246, India
| |
Collapse
|
3
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Perez VA, Sanders DW, Mendoza-Oliva A, Stopschinski BE, Mullapudi V, White CL, Joachimiak LA, Diamond MI. DnaJC7 specifically regulates tau seeding. eLife 2023; 12:e86936. [PMID: 37387473 PMCID: PMC10473839 DOI: 10.7554/elife.86936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs), cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to stimulate Hsp70 ATPase activity, as JD mutations that block this interaction abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abolished its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.
Collapse
Affiliation(s)
- Valerie Ann Perez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Barbara Elena Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Charles L White
- Department of Pathology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
5
|
Perez VA, Sanders DW, Mendoza-Oliva A, Stopschinski BE, Mullapudi V, White CL, Joachimiak LA, Diamond MI. DnaJC7 specifically regulates tau seeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532880. [PMID: 36993367 PMCID: PMC10055123 DOI: 10.1101/2023.03.16.532880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs) cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to bind to Hsp70, as JD mutations that block binding to Hsp70 abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abrogated its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.
Collapse
Affiliation(s)
- Valerie A Perez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Charles L White
- Department of Pathology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Biochemistry, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
6
|
Schmitz M, Candelise N, Canaslan S, Altmeppen HC, Matschke J, Glatzel M, Younas N, Zafar S, Hermann P, Zerr I. α-Synuclein conformers reveal link to clinical heterogeneity of α-synucleinopathies. Transl Neurodegener 2023; 12:12. [PMID: 36915212 PMCID: PMC10012698 DOI: 10.1186/s40035-023-00342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
α-Synucleinopathies, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, are a class of neurodegenerative diseases exhibiting intracellular inclusions of misfolded α-synuclein (αSyn), referred to as Lewy bodies or oligodendroglial cytoplasmic inclusions (Papp-Lantos bodies). Even though the specific cellular distribution of aggregated αSyn differs in PD and DLB patients, both groups show a significant pathological overlap, raising the discussion of whether PD and DLB are the same or different diseases. Besides clinical investigation, we will focus in addition on methodologies, such as protein seeding assays (real-time quaking-induced conversion), to discriminate between different types of α-synucleinopathies. This approach relies on the seeding conversion properties of misfolded αSyn, supporting the hypothesis that different conformers of misfolded αSyn may occur in different types of α-synucleinopathies. Understanding the pathological processes influencing the disease progression and phenotype, provoked by different αSyn conformers, will be important for a personalized medical treatment in future.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany.
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Institute Superiore di Sanità, Rome, Italy
| | - Sezgi Canaslan
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Neelam Younas
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Saima Zafar
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Peter Hermann
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| |
Collapse
|
7
|
Wittmer Y, Jami KM, Stowell RK, Le T, Hung I, Murray DT. Liquid Droplet Aging and Seeded Fibril Formation of the Cytotoxic Granule Associated RNA Binding Protein TIA1 Low Complexity Domain. J Am Chem Soc 2023; 145:1580-1592. [PMID: 36638831 PMCID: PMC9881004 DOI: 10.1021/jacs.2c08596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein domains biased toward a few amino acid types are vital for the formation of biomolecular condensates in living cells. These membraneless compartments are formed by molecules exhibiting a range of molecular motions and structural order. Missense mutations increase condensate persistence lifetimes or structural order, properties that are thought to underlie pathological protein aggregation. In the context of stress granules associated with neurodegenerative diseases, this process involves the rigidification of protein liquid droplets into β-strand rich protein fibrils. Here, we characterize the molecular mechanism underlying the rigidification of liquid droplets for the low complexity domain of the Cytotoxic granule associated RNA binding protein TIA1 (TIA1) stress granule protein and the influence of a disease mutation linked to neurodegenerative diseases. A seeding procedure and solid state nuclear magnetic resonance measurements show that the low complexity domain converges on a β-strand rich fibril conformation composed of 21% of the sequence. Additional solid state nuclear magnetic resonance measurements and difference spectroscopy show that aged liquid droplets of wild type and a proline-to-leucine mutant low complexity domain are composed of fibril assemblies that are conformationally heterogeneous and structurally distinct from the seeded fibril preparation. Regarding low complexity domains, our data support the functional template-driven formation of conformationally homogeneous structures, that rigidification of liquid droplets into conformationally heterogenous structures promotes pathological interactions, and that the effect of disease mutations is more nuanced than increasing thermodynamic stability or increasing β-strand structure content.
Collapse
Affiliation(s)
- Yuuki Wittmer
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Khaled M. Jami
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Rachelle K. Stowell
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Truc Le
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Ivan Hung
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dylan T. Murray
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States,
| |
Collapse
|
8
|
Griffin TA, Schnier PD, Cleveland EM, Newberry RW, Becker J, Carlson GA. Fibril treatment changes protein interactions of tau and α-synuclein in human neurons. J Biol Chem 2023; 299:102888. [PMID: 36634849 PMCID: PMC9978635 DOI: 10.1016/j.jbc.2023.102888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
In several neurodegenerative disorders, the neuronal proteins tau and α-synuclein adopt aggregation-prone conformations capable of replicating within and between cells. To better understand how these conformational changes drive neuropathology, we compared the interactomes of tau and α-synuclein in the presence or the absence of recombinant fibril seeds. Human embryonic stem cells with an inducible neurogenin-2 transgene were differentiated into glutamatergic neurons expressing (1) WT 0N4R tau, (2) mutant (P301L) 0N4R tau, (3) WT α-synuclein, or (4) mutant (A53T) α-synuclein, each genetically fused to a promiscuous biotin ligase (BioID2). Neurons expressing unfused BioID2 served as controls. After treatment with fibrils or PBS, interacting proteins were labeled with biotin in situ and quantified using mass spectrometry via tandem mass tag labeling. By comparing interactions in mutant versus WT neurons and in fibril- versus PBS-treated neurons, we observed changes in protein interactions that are likely relevant to disease progression. We identified 45 shared interactors, suggesting that tau and α-synuclein function within some of the same pathways. Potential loci of shared interactions include microtubules, Wnt signaling complexes, and RNA granules. Following fibril treatment, physiological interactions decreased, whereas other interactions, including those between tau and 14-3-3 η, increased. We confirmed that 14-3-3 proteins, which are known to colocalize with protein aggregates during neurodegeneration, can promote or inhibit tau aggregation in vitro depending on the specific combination of 14-3-3 isoform and tau sequence.
Collapse
Affiliation(s)
- Tagan A Griffin
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Paul D Schnier
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Elisa M Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Robert W Newberry
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Julia Becker
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.
| |
Collapse
|
9
|
Fernández-Ramírez MDC, Ng KKS, Menéndez M, Laurents DV, Hervás R, Carrión-Vázquez M. Expanded Conformations of Monomeric Tau Initiate Its Amyloidogenesis. Angew Chem Int Ed Engl 2022; 62:e202209252. [PMID: 36542681 DOI: 10.1002/anie.202209252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.
Collapse
Affiliation(s)
- María Del Carmen Fernández-Ramírez
- Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, 28002, Madrid, Spain.,Current address: Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Kan-Shing Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), Spain
| | - Douglas V Laurents
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | |
Collapse
|
10
|
Brás IC, Khani MH, Vasili E, Möbius W, Riedel D, Parfentev I, Gerhardt E, Fahlbusch C, Urlaub H, Zweckstetter M, Gollisch T, Outeiro TF. Molecular Mechanisms Mediating the Transfer of Disease-Associated Proteins and Effects on Neuronal Activity. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2397-2422. [PMID: 36278361 DOI: 10.3233/jpd-223516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Various cellular pathways have been implicated in the transfer of disease-related proteins between cells, contributing to disease progression and neurodegeneration. However, the overall effects of protein transfer are still unclear. OBJECTIVE Here, we performed a systematic comparison of basic molecular mechanisms involved in the release of alpha-synuclein, Tau, and huntingtin, and evaluated functional effects upon internalization by receiving cells. METHODS Evaluation of protein release to the extracellular space in a free form and in extracellular vesicles using an optimized ultracentrifugation protocol. The extracellular effects of the proteins and extracellular vesicles in primary neuronal cultures were assessed using multi-channel electrophysiological recordings combined with a customized spike sorting framework. RESULTS We demonstrate cells differentially release free-forms of each protein to the extracellular space. Importantly, neuronal activity is distinctly modulated upon protein internalization in primary cortical cultures. In addition, these disease-related proteins also occur in extracellular vesicles, and are enriched in ectosomes. Internalization of ectosomes and exosomes by primary microglial or astrocytic cells elicits the production of pro-inflammatory cytokines, and modifies spontaneous electrical activity in neurons. OBJECTIVE Overall, our study demonstrates that released proteins can have detrimental effects for surrounding cells, and suggests protein release pathways may be exploited as therapeutic targets in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Inês C Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mohammad H Khani
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Iwan Parfentev
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom.,Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
11
|
Staderini M, Vanni S, Baldeschi AC, Giachin G, Zattoni M, Celauro L, Ferracin C, Bistaffa E, Moda F, Pérez DI, Martínez A, Martín MA, Martín-Cámara O, Cores Á, Bianchini G, Kammerer R, Menéndez JC, Legname G, Bolognesi ML. Bifunctional carbazole derivatives for simultaneous therapy and fluorescence imaging in prion disease murine cell models. Eur J Med Chem 2022; 245:114923. [DOI: 10.1016/j.ejmech.2022.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/20/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
|
12
|
Hromadkova L, Siddiqi MK, Liu H, Safar JG. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells 2022; 11:2997. [PMID: 36230957 PMCID: PMC9562632 DOI: 10.3390/cells11192997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Recent findings of diverse populations of prion-like conformers of misfolded tau protein expand the prion concept to Alzheimer's disease (AD) and monogenic frontotemporal lobar degeneration (FTLD)-MAPT P301L, and suggest that distinct strains of misfolded proteins drive the phenotypes and progression rates in many neurodegenerative diseases. Notable progress in the previous decades has generated many lines of proof arguing that yeast, fungal, and mammalian prions determine heritable as well as infectious traits. The extraordinary phenotypic diversity of human prion diseases arises from structurally distinct prion strains that target, at different progression speeds, variable brain structures and cells. Although human prion research presents beneficial lessons and methods to study the mechanism of strain diversity of protein-only pathogens, the fundamental molecular mechanism by which tau conformers are formed and replicate in diverse tauopathies is still poorly understood. In this review, we summarize up to date advances in identification of diverse tau conformers through biophysical and cellular experimental paradigms, and the impact of heterogeneity of pathological tau strains on personalized structure- and strain-specific therapeutic approaches in major tauopathies.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - He Liu
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Paoletti M, Caverzasi E, Mandelli ML, Brown JA, Henry RG, Miller BL, Rosen HJ, DeArmond SJ, Bastianello S, Seeley WW, Geschwind MD. Default Mode Network quantitative diffusion and resting-state functional magnetic resonance imaging correlates in sporadic Creutzfeldt-Jakob disease. Hum Brain Mapp 2022; 43:4158-4173. [PMID: 35662331 PMCID: PMC9374887 DOI: 10.1002/hbm.25945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022] Open
Abstract
Grey matter involvement is a well-known feature in sporadic Creutzfeldt-Jakob disease (sCJD), yet precise anatomy-based quantification of reduced diffusivity is still not fully understood. Default Mode Network (DMN) areas have been recently demonstrated as selectively involved in sCJD, and functional connectivity has never been investigated in prion diseases. We analyzed the grey matter involvement using a quantitatively multi-parametric MRI approach. Specifically, grey matter mean diffusivity of 37 subjects with sCJD was compared with that of 30 age-matched healthy controls with a group-wise approach. Differences in mean diffusivity were also examined between the cortical (MM(V)1, MM(V)2C, and VV1) and subcortical (VV2 and MV2K) subgroups of sCJD for those with autopsy data available (n = 27, 73%). We also assessed resting-state functional connectivity of both ventral and dorsal components of DMN in a subset of subject with a rs-fMRI dataset available (n = 17). Decreased diffusivity was predominantly present in posterior cortical regions of the DMN, but also outside of the DMN in temporal areas and in a few limbic and frontal areas, in addition to extensive deep nuclei involvement. Both subcortical and cortical sCJD subgroups showed decreased diffusivity subcortically, whereas only the cortical type expressed significantly decreased diffusivity cortically, mainly in parietal, occipital, and medial-inferior temporal cortices bilaterally. Interestingly, we found abnormally increased connectivity in both dorsal and ventral components of the DMN in sCJD subjects compared with healthy controls. The significance and possible utility of functional imaging as a biomarker for tracking disease progression in prion disease needs to be explored further.
Collapse
Affiliation(s)
- Matteo Paoletti
- Memory and Aging Center, Department of Neurology, Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeuroradiologyIRCCS Mondino FoundationPaviaItaly
| | - Eduardo Caverzasi
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jesse A. Brown
- Memory and Aging Center, Department of Neurology, Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Roland G. Henry
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Graduate Group in BioengineeringUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Howard J. Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Stefano Bastianello
- Department of NeuroradiologyIRCCS Mondino FoundationPaviaItaly
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michael D. Geschwind
- Memory and Aging Center, Department of Neurology, Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
14
|
Mirbaha H, Chen D, Mullapudi V, Terpack SJ, White CL, Joachimiak LA, Diamond MI. Seed-competent tau monomer initiates pathology in a tauopathy mouse model. J Biol Chem 2022; 298:102163. [PMID: 35750209 PMCID: PMC9307951 DOI: 10.1016/j.jbc.2022.102163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/21/2022] Open
Abstract
Tau aggregation into ordered assemblies causes neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles and that Ms encodes strains, that is, unique, self-replicating, biologically active assemblies. It is unknown if disease begins with Ms formation followed by fibril assembly or if Ms derives from fibrils and is therefore an epiphenomenon. Here, we studied a tauopathy mouse model (PS19) that expresses full-length mutant human (1N4R) tau (P301S). Insoluble tau seeding activity appeared at 2 months of age and insoluble tau protein assemblies by immunoblot at 3 months. Tau monomer from mice aged 1 to 6 weeks, purified using size-exclusion chromatography, contained soluble seeding activity at 4 weeks, before insoluble material or larger assemblies were observed, with assemblies ranging from n = 1 to 3 tau units. By 5 to 6 weeks, large soluble assemblies had formed. This indicated that the first detectable pathological forms of tau were in fact Ms. We next examined posttranslational modifications of tau monomer from 1 to 6 weeks. We detected no phosphorylation unique to Ms in PS19 or human Alzheimer's disease brains. We conclude that tauopathy begins with formation of the Ms monomer, whose activity is phosphorylation independent. Ms then self assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for the origins of tauopathy in humans.
Collapse
Affiliation(s)
- Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dailu Chen
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sandi Jo Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles L White
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
15
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Kim C, Haldiman T, Kang SG, Hromadkova L, Han ZZ, Chen W, Lissemore F, Lerner A, de Silva R, Cohen ML, Westaway D, Safar JG. Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer's disease. Sci Transl Med 2022; 14:eabg0253. [PMID: 34985969 DOI: 10.1126/scitranslmed.abg0253] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Wei Chen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Frances Lissemore
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality. J Pers Med 2021; 11:jpm11121341. [PMID: 34945813 PMCID: PMC8705703 DOI: 10.3390/jpm11121341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
To characterize the attention deficits in one-hundred-fifteen participants, comprising two types of clinical profiles (affective and anxiety disorder), through a test of continuous VR execution. Method: Three tests (i.e., Nesplora Aquarium, BDI, and STAI) were used to obtain a standardized measure of attention, as well as the existence and severity of depression and anxiety, respectively. Results: Significant differences (CI = 95%) were found between the control group and the group with depression, in variables related to the speed of visual processing (p = 0.008) in the absence of distractors (p = 0.041) and during the first dual execution task (p = 0.011). For scores related to sustained attention, patients with depression and those with anxiety did not differ from controls. Our results suggest attentional deficits in both clinical populations when performing a continuous performance test that involved the participation of the central executive system of working memory.
Collapse
|
18
|
Kaufman SK, Svirsky S, Cherry JD, McKee AC, Diamond MI. Tau seeding in chronic traumatic encephalopathy parallels disease severity. Acta Neuropathol 2021; 142:951-960. [PMID: 34626223 PMCID: PMC8763021 DOI: 10.1007/s00401-021-02373-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy, is associated with behavioral, mood and cognitive impairment, including dementia. Tauopathies are neurodegenerative diseases whose neuropathological phenotypes are characterized by distinct histopathologic features of tau pathology, which progressively deposit throughout the brain. In certain tauopathies, especially Alzheimer's disease (AD), tau deposition appears to follow brain network connections. Experimental evidence suggests that the progression of tau pathology in humans, mouse and cell models could be explained by tau seeds that adopt distinct conformations and serve as templates for their own amplification to mediate transcellular propagation of pathology. Tau seeds are efficiently detected by the induction of aggregation in cell-based "biosensors" that express tau repeat domain (RD) with a disease-associated mutation (P301S) fused to complementary fluorescent protein tags (cyan and yellow fluorescent protein). Biosensors enable quantification of tau seeding in fixed and fresh-frozen brain tissue. Phospho-tau deposition in CTE follows progressive stages (I-IV), but the relationship of seeding to this deposition is unclear. We have used an established biosensor assay to independently quantify tau seeding as compared to AT8 phospho-tau histopathology in thin sections of fixed tissues of 11 brain regions from 27 patients with CTE, 5 with other tauopathies, and 5 negative controls. In contrast to prior studies of AD, we detected tau seeding late in the course of CTE (predominantly stages III and IV). It was less anatomically prevalent than AT8-positive inclusions, which were relatively widespread. We especially observed seeding in the limbic system (amygdala, thalamus, basal ganglia), which may explain the dominant cognitive and behavior impairments that characterize CTE.
Collapse
Affiliation(s)
- Sarah K Kaufman
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, NL10.120, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Sarah Svirsky
- Alzheimer's Disease and Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston University, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan D Cherry
- Alzheimer's Disease and Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, MA, USA
| | - Ann C McKee
- Alzheimer's Disease and Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston University, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, MA, USA
- Edith Nourse Rogers Memorial VA Medical Center, Bedford, MA, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, NL10.120, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Stopschinski BE, Del Tredici K, Estill-Terpack SJ, Ghebremedhin E, Yu FF, Braak H, Diamond MI. Anatomic survey of seeding in Alzheimer's disease brains reveals unexpected patterns. Acta Neuropathol Commun 2021; 9:164. [PMID: 34635189 PMCID: PMC8507321 DOI: 10.1186/s40478-021-01255-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are heterogeneous neurodegenerative diseases defined by progressive brain accumulation of tau aggregates. The most common tauopathy, sporadic Alzheimer's disease (AD), involves progressive tau deposition that can be divided into specific stages of neurofibrillary tangle pathology. This classification is consistent with experimental data which suggests that network-based propagation is mediated by cell-cell transfer of tau "seeds", or assemblies, that serve as templates for their own replication. Until now, seeding assays of AD brain have largely been limited to areas previously defined by NFT pathology. We now expand this work to additional regions. We selected 20 individuals with AD pathology of NFT stages I, III, and V. We stained and classified 25 brain regions in each using the anti-phospho-tau monoclonal antibody AT8. We measured tau seeding in each of the 500 samples using a cell-based tau "biosensor" assay in which induction of intracellular tau aggregation is mediated by exogenous tau assemblies. We observed a progressive increase in tau seeding according to NFT stage. Seeding frequently preceded NFT pathology, e.g., in the basolateral subnucleus of the amygdala and the substantia nigra, pars compacta. We observed seeding in brain regions not previously known to develop tau pathology, e.g., the globus pallidus and internal capsule, where AT8 staining revealed mainly axonal accumulation of tau. AT8 staining in brain regions identified because of tau seeding also revealed pathology in a previously undescribed cell type: Bergmann glia of the cerebellar cortex. We also detected tau seeding in brain regions not previously examined, e.g., the intermediate reticular zone, dorsal raphe nucleus, amygdala, basal nucleus of Meynert, and olfactory bulb. In conclusion, tau histopathology and seeding are complementary analytical tools. Tau seeding assays reveal pathology in the absence of AT8 signal in some instances, and previously unrecognized sites of tau deposition. The variation in sites of seeding between individuals could underlie differences in the clinical presentation and course of AD.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Sandi-Jo Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | | | - Fang F Yu
- Department for Radiology, Neuroradiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
20
|
Abstract
Tauopathies consist of over 25 different neurodegenerative diseases that include argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick’s disease (PiD). Tauopathies are defined by brain accumulation of microtubule-associated protein tau in fibrillar aggregates, whose prevalence strongly correlates with dementia. Dominant mutations in tau cause neurodegenerative diseases, and most increase its aggregation propensity. Pathogenesis of tauopathies may involve pathological tau conformers that serve as templates to recruit native protein into growing assemblies and also move between brain cells to cause disease progression, similar to prions. Prions adopt pathological conformations, termed “strains,” that stably propagate in living systems, and create unique patterns of neuropathology. Data from multiple laboratories now suggest that tau acts as a prion. It propagates unique strains indefinitely in cultured cells, and when these are inoculated into mouse models, they create defined neuropathological patterns, which establish a direct link between conformation and disease. In humans, distinct fibril structures are associated with different diseases, but causality has not been established as in mice. Cryo-EM structures of tau fibrils isolated from tauopathy brains reveal distinct fibril cores across disease. Interestingly, the conformation of the tau monomer unit within different fibril subtypes from the same patient appears relatively preserved. This is consistent with data that the tau monomer samples an ensemble of conformations that act as distinct pathologic templates in the formation of restricted numbers of strains. The propensity of a tau monomer to adopt distinct conformations appears to be linked to defined local motifs that expose different patterns of amyloidogenic amino acid sequences. The prion hypothesis, which predicts that protein structure dictates resultant disease, has proved particularly useful to understand the diversity of human tauopathies. The challenge now is to develop methods to rapidly classify patients according to the structure of the underlying pathological protein assemblies to achieve more accurate diagnosis and effective therapy.
Collapse
|
21
|
Li D, Liu C. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nat Chem Biol 2021; 17:237-245. [PMID: 33432239 DOI: 10.1038/s41589-020-00708-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
Amyloid aggregation, which disrupts protein homeostasis, is a common pathological event occurring in human neurodegenerative diseases (NDs). Numerous evidences have shown that the structural diversity, so-called polymorphism, is decisive to the amyloid pathology and is closely associated with the onset, progression, and phenotype of ND. But how could one protein form so many stable structures? Recently, atomic structural evidence has been rapidly mounting to depict the involvement of chemical modifications in the amyloid fibril formation. In this Perspective, we aim to present a hierarchical regulation of chemical modifications including covalent post-translational modifications (PTMs) and noncovalent cofactor binding in governing the polymorphic amyloid formation, based mainly on the latest α-synuclein and Tau fibril structures. We hope to emphasize the determinant role of chemical modifications in amyloid assembly and pathology and to evoke chemical biological approaches to lead the fundamental and therapeutic research on protein amyloid state and the associated NDs.
Collapse
Affiliation(s)
- Dan Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
22
|
Armaos A, Zacco E, Sanchez de Groot N, Tartaglia GG. RNA-protein interactions: Central players in coordination of regulatory networks. Bioessays 2020; 43:e2000118. [PMID: 33284474 DOI: 10.1002/bies.202000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration-dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post-transcriptional layer of gene regulation. We describe the structural and interaction network properties that characterize the ability of protein and RNA molecules to interact and phase separate in liquid-like compartments. Finally, we show that presence of structurally disordered regions in proteins correlate with the propensity to undergo liquid-to-solid phase transitions and cause human diseases. Also see the video abstract here https://youtu.be/kfpqibsNfS0.
Collapse
Affiliation(s)
- Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Elsa Zacco
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
24
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
25
|
Delta-secretase cleavage of Tau mediates its pathology and propagation in Alzheimer's disease. Exp Mol Med 2020; 52:1275-1287. [PMID: 32859953 PMCID: PMC8080617 DOI: 10.1038/s12276-020-00494-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with age as a major risk factor. AD is the most common dementia with abnormal structures, including extracellular senile plaques and intraneuronal neurofibrillary tangles, as key neuropathologic hallmarks. The early feature of AD pathology is degeneration of the locus coeruleus (LC), which is the main source of norepinephrine (NE) supplying various cortical and subcortical areas that are affected in AD. The spread of Tau deposits is first initiated in the LC and is transported in a stepwise manner from the entorhinal cortex to the hippocampus and then to associative regions of the neocortex as the disease progresses. Most recently, we reported that the NE metabolite DOPEGAL activates delta-secretase (AEP, asparagine endopeptidase) and triggers pathological Tau aggregation in the LC, providing molecular insight into why LC neurons are selectively vulnerable to developing early Tau pathology and degenerating later in the disease and how δ-secretase mediates the spread of Tau pathology to the rest of the brain. This review summarizes our current understanding of the crucial role of δ-secretase in driving and spreading AD pathologies by cleaving multiple critical players, including APP and Tau, supporting that blockade of δ-secretase may provide an innovative disease-modifying therapeutic strategy for treating AD. The identification of an enzyme that plays a critical role in the progression of Alzheimer’s disease (AD) could lead to novel therapeutic interventions. In the earliest stage of AD, the build-up of Tau protein aggregates causes degeneration of a site in the brainstem. These abnormal Tau accumulations then spread to other parts of the brain. Recent research suggests that an enzyme called delta-secretase cleaves Tau and other key molecules, making Tau more prone to forming aggregates and thus facilitating disease progression. Keqiang Ye and co-workers at Emory University School of Medicine in Atlanta, USA, reviewed current understanding of the role of delta-secretase in AD pathology. Studies show that delta-secretase expression levels are high in aged mice and AD brains. Inhibiting delta-secretase could therefore limit neurodegeneration and alleviate cognitive deficits in patients.
Collapse
|
26
|
Daude N, Kim C, Kang SG, Eskandari-Sedighi G, Haldiman T, Yang J, Fleck SC, Gomez-Cardona E, Han ZZ, Borrego-Ecija S, Wohlgemuth S, Julien O, Wille H, Molina-Porcel L, Gelpi E, Safar JG, Westaway D. Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT-P301L mutation. Acta Neuropathol 2020; 139:1045-1070. [PMID: 32219515 PMCID: PMC7244472 DOI: 10.1007/s00401-020-02148-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/29/2023]
Abstract
Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Shelaine C Fleck
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sergi Borrego-Ecija
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
- Department of Neurology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Lau Y, Oamen HP, Caudron F. Protein Phase Separation during Stress Adaptation and Cellular Memory. Cells 2020; 9:cells9051302. [PMID: 32456195 PMCID: PMC7291175 DOI: 10.3390/cells9051302] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cells need to organise and regulate their biochemical processes both in space and time in order to adapt to their surrounding environment. Spatial organisation of cellular components is facilitated by a complex network of membrane bound organelles. Both the membrane composition and the intra-organellar content of these organelles can be specifically and temporally controlled by imposing gates, much like bouncers controlling entry into night-clubs. In addition, a new level of compartmentalisation has recently emerged as a fundamental principle of cellular organisation, the formation of membrane-less organelles. Many of these structures are dynamic, rapidly condensing or dissolving and are therefore ideally suited to be involved in emergency cellular adaptation to stresses. Remarkably, the same proteins have also the propensity to adopt self-perpetuating assemblies which properties fit the needs to encode cellular memory. Here, we review some of the principles of phase separation and the function of membrane-less organelles focusing particularly on their roles during stress response and cellular memory.
Collapse
|
28
|
Stopschinski BE, Thomas TL, Nadji S, Darvish E, Fan L, Holmes BB, Modi AR, Finnell JG, Kashmer OM, Estill-Terpack S, Mirbaha H, Luu HS, Diamond MI. A synthetic heparinoid blocks Tau aggregate cell uptake and amplification. J Biol Chem 2020; 295:2974-2983. [PMID: 31974166 DOI: 10.1074/jbc.ra119.010353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/21/2020] [Indexed: 01/30/2023] Open
Abstract
Tau aggregation underlies neurodegeneration in Alzheimer's disease and related tauopathies. We and others have proposed that transcellular propagation of pathology is mediated by Tau prions, which are ordered protein assemblies that faithfully replicate in vivo and cause specific biological effects. The prion model predicts the release of aggregates from a first-order cell and subsequent uptake into a second-order cell. The assemblies then serve as templates for their own replication, a process termed "seeding." We have previously observed that heparan sulfate proteoglycans on the cell surface mediate the cellular uptake of Tau aggregates. This interaction is blocked by heparin, a sulfated glycosaminoglycan. Indeed, heparin-like molecules, or heparinoids, have previously been proposed as a treatment for PrP prion disorders. However, heparin is not ideal for managing chronic neurodegeneration, because it is difficult to synthesize in defined sizes, may have poor brain penetration because of its negative charge, and is a powerful anticoagulant. Therefore, we sought to generate an oligosaccharide that would bind Tau and block its cellular uptake and seeding, without exhibiting anticoagulation activity. We created a compound, SN7-13, from pentasaccharide units and tested it in a range of assays that measured direct binding of Tau to glycosaminoglycans and inhibition of Tau uptake and seeding in cells. SN7-13 does not inhibit coagulation, binds Tau with low nanomolar affinity, and inhibits cellular Tau aggregate propagation similarly to standard porcine heparin. This synthetic heparinoid could facilitate the development of agents to treat tauopathy.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Neurology, RWTH University Aachen, 52074 Aachen, Germany
| | - Talitha L Thomas
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sourena Nadji
- PharmaRen Discovery LLC, Berkeley, Missouri 63134-3115
| | - Eric Darvish
- PharmaRen Discovery LLC, Berkeley, Missouri 63134-3115
| | - Linfeng Fan
- Shanghai Acana Pharmtech Co. Ltd., Berkeley, Missouri 63134-3115
| | - Brandon B Holmes
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Neurology, University of California, San Francisco, California 94143
| | - Anuja R Modi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jordan G Finnell
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sandi Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hung S Luu
- Department of Pathology, Children's Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
29
|
Hudák A, Kusz E, Domonkos I, Jósvay K, Kodamullil AT, Szilák L, Hofmann-Apitius M, Letoha T. Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Sci Rep 2019; 9:16543. [PMID: 31719623 PMCID: PMC6851098 DOI: 10.1038/s41598-019-53038-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Scientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet. Here we report that members of the syndecan family of HSPGs mediate cellular uptake of α-synuclein and tau fibrils via a lipid-raft dependent and clathrin-independent endocytic route. Among syndecans, the neuron predominant syndecan-3 exhibits the highest affinity for both α-synuclein and tau. Syndecan-mediated internalization of α-synuclein and tau depends heavily on conformation as uptake via syndecans start to dominate once fibrils are formed. Overexpression of syndecans, on the other hand, reduces cellular uptake of monomeric α-synuclein and tau, yet exerts a fibril forming effect on both proteins. Data obtained from syndecan overexpressing cellular models presents syndecans, especially the neuron predominant syndecan-3, as important mediators of seeding and spreading of α-synuclein and tau and reveal how syndecans contribute to fundamental molecular events of α-synuclein and tau pathology.
Collapse
Affiliation(s)
| | | | - Ildikó Domonkos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Katalin Jósvay
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Alpha Tom Kodamullil
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | - László Szilák
- Szilak Laboratories, Bioinformatics and Molecule-Design, Szeged, H-6723, Hungary
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | | |
Collapse
|
30
|
Naseri NN, Wang H, Guo J, Sharma M, Luo W. The complexity of tau in Alzheimer's disease. Neurosci Lett 2019; 705:183-194. [PMID: 31028844 PMCID: PMC7060758 DOI: 10.1016/j.neulet.2019.04.022] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is characterized by two major pathological lesions in the brain, amyloid plaques and neurofibrillary tangles (NFTs) composed mainly of amyloid-β (Aβ) peptides and hyperphosphorylated tau, respectively. Although accumulation of toxic Aβ species in the brain has been proposed as one of the important early events in AD, continued lack of success of clinical trials based on Aβ-targeting drugs has triggered the field to seek out alternative disease mechanisms and related therapeutic strategies. One of the new approaches is to uncover novel roles of pathological tau during disease progression. This review will primarily focus on recent advances in understanding the contributions of tau to AD.
Collapse
Affiliation(s)
- Nima N Naseri
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA.
| | - Hong Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, USA
| | - Jennifer Guo
- The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
31
|
French RL, Grese ZR, Aligireddy H, Dhavale DD, Reeb AN, Kedia N, Kotzbauer PT, Bieschke J, Ayala YM. Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J Biol Chem 2019; 294:6696-6709. [PMID: 30824544 PMCID: PMC6497947 DOI: 10.1074/jbc.ra118.005889] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Aggregates of the RNA-binding protein TDP-43 (TAR DNA-binding protein) are a hallmark of the overlapping neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The process of TDP-43 aggregation remains poorly understood, and whether it includes formation of intermediate complexes is unknown. Here, we analyzed aggregates derived from purified TDP-43 under semidenaturing conditions, identifying distinct oligomeric complexes at the initial time points before the formation of large aggregates. We found that this early oligomerization stage is primarily driven by TDP-43's RNA-binding region. Specific binding to GU-rich RNA strongly inhibited both TDP-43 oligomerization and aggregation, suggesting that RNA interactions are critical for maintaining TDP-43 solubility. Moreover, we analyzed TDP-43 liquid-liquid phase separation and detected similar detergent-resistant oligomers upon maturation of liquid droplets into solid-like fibrils. These results strongly suggest that the oligomers form during the early steps of TDP-43 misfolding. Importantly, the ALS-linked TDP-43 mutations A315T and M337V significantly accelerate aggregation, rapidly decreasing the monomeric population and shortening the oligomeric phase. We also show that aggregates generated from purified TDP-43 seed intracellular aggregation detected by established TDP-43 pathology markers. Remarkably, cytoplasmic aggregate seeding was detected earlier for the A315T and M337V variants and was 50% more widespread than for WT TDP-43 aggregates. We provide evidence for an initial step of TDP-43 self-assembly into intermediate oligomeric complexes, whereby these complexes may provide a scaffold for aggregation. This process is altered by ALS-linked mutations, underscoring the role of perturbations in TDP-43 homeostasis in protein aggregation and ALS-FTD pathogenesis.
Collapse
Affiliation(s)
- Rachel L French
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Zachary R Grese
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Himani Aligireddy
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Dhruva D Dhavale
- the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Ashley N Reeb
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Niraja Kedia
- the MRC Prion Unit, University College London, London W1W 7FF, United Kingdom
| | - Paul T Kotzbauer
- the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Jan Bieschke
- the MRC Prion Unit, University College London, London W1W 7FF, United Kingdom
| | - Yuna M Ayala
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103,
| |
Collapse
|
32
|
Abstract
Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aβ, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
33
|
Candelise N, Schmitz M, Llorens F, Villar-Piqué A, Cramm M, Thom T, da Silva Correia SM, da Cunha JEG, Möbius W, Outeiro TF, Álvarez VG, Banchelli M, D'Andrea C, de Angelis M, Zafar S, Rabano A, Matteini P, Zerr I. Seeding variability of different alpha synuclein strains in synucleinopathies. Ann Neurol 2019; 85:691-703. [PMID: 30805957 DOI: 10.1002/ana.25446] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Currently, the exact reasons why different α-synucleinopathies exhibit variable pathologies and phenotypes are still unknown. A potential explanation may be the existence of distinctive α-synuclein conformers or strains. Here, we intend to analyze the seeding activity of dementia with Lewy bodies (DLB) and Parkinson's disease (PD) brain-derived α-synuclein seeds by real-time quaking-induced conversion (RT-QuIC) and to investigate the structure and morphology of the α-synuclein aggregates generated by RT-QuIC. METHODS A misfolded α-synuclein-enriched brain fraction from frontal cortex and substantia nigra pars compacta tissue, isolated by several filtration and centrifugation steps, was subjected to α-synuclein/RT-QuIC analysis. Our study included neuropathologically well-characterized cases with DLB, PD, and controls (Ctrl). Biochemical and morphological analyses of RT-QuIC products were conducted by western blot, dot blot analysis, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. RESULTS Independently from the brain region, we observed different seeding kinetics of α-synuclein in the RT-QuIC in patients with DLB compared to PD and Ctrl. Biochemical characterization of the RT-QuIC product indicated the generation of a proteinase K-resistant and fibrillary α-synuclein species in DLB-seeded reactions, whereas PD and control seeds failed in the conversion of wild-type α-synuclein substrate. INTERPRETATION Structural variances of α-synuclein seeding kinetics and products in DLB and PD indicated, for the first time, the existence of different α-synuclein strains in these groups. Therefore, our study contributes to a better understanding of the clinical heterogeneity among α-synucleinopathies, offers an opportunity for a specific diagnosis, and opens new avenues for the future development of strain-specific therapies. Ann Neurol 2019;85:691-703.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain and IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitale de Llobregat, Spain
| | - Anna Villar-Piqué
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tobias Thom
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susana Margarida da Silva Correia
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Wiebke Möbius
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany.,Max Planck Institute for Experimental Medicine Medicine Department of Neurogenetics, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine Medicine Department of Neurogenetics, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Valentina González Álvarez
- Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Madrid, Spain
| | - Martina Banchelli
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Marella de Angelis
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Saima Zafar
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Alberto Rabano
- Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Madrid, Spain
| | - Paolo Matteini
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
34
|
Vergara C, Houben S, Suain V, Yilmaz Z, De Decker R, Vanden Dries V, Boom A, Mansour S, Leroy K, Ando K, Brion JP. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol 2019; 137:397-412. [PMID: 30599077 DOI: 10.1007/s00401-018-1953-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
Neuropathological analysis in Alzheimer's disease (AD) and experimental evidence in transgenic models overexpressing frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) mutant tau suggest that amyloid-β pathology enhances the development of tau pathology. In this work, we analyzed this interaction independently of the overexpression of an FTDP-17 mutant tau, by analyzing tau pathology in wild-type (WT), 5xFAD, APP-/- and tau-/- mice after stereotaxic injection in the somatosensory cortex of short-length native human AD-PHF. Gallyas and phosphotau-positive tau inclusions developed in WT, 5xFAD, and APP-/- but not in tau-/- mice. Ultrastructural analysis demonstrated their intracellular localization and that they were composed of straight filaments. These seeded tau inclusions were composed only of endogenous murine tau exhibiting a tau antigenic profile similar to tau aggregates in AD. Insoluble tau level was higher and ipsilateral anteroposterior and contralateral cortical spreading of tau inclusions was more important in AD-PHF-injected 5xFAD mice than in WT mice. The formation of large plaque-associated dystrophic neurites positive for oligomeric and phosphotau was observed in 5xFAD mice injected with AD-PHF but never in control-injected or in non-injected 5xFAD mice. An increased level of the p25 activator of CDK5 kinase was found in AD-PHF-injected 5xFAD mice. These data demonstrate in vivo that the presence of Aβ pathology enhances experimentally induced tau seeding of endogenous, wild-type tau expressed at physiological level, and demonstrate the fibrillar nature of heterotopically seeded endogenous tau. These observations further support the hypothesis that Aβ enhances tau pathology development in AD through increased pathological tau spreading.
Collapse
Affiliation(s)
- Cristina Vergara
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Valérie Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Robert De Decker
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Virginie Vanden Dries
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Alain Boom
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Salwa Mansour
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium.
| |
Collapse
|
35
|
TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathol 2019; 137:259-277. [PMID: 30465259 PMCID: PMC6377165 DOI: 10.1007/s00401-018-1937-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
RNA binding proteins (RBPs) are strongly linked to the pathophysiology of motor neuron diseases. Recent studies show that RBPs, such as TIA1, also contribute to the pathophysiology of tauopathy. RBPs co-localize with tau pathology, and reduction of TIA1 protects against tau-mediated neurodegeneration. The mechanism through which TIA1 reduction protects against tauopathy, and whether TIA1 modulates the propagation of tau, are unknown. Previous studies indicate that the protective effect of TIA1 depletion correlates with both the reduction of oligomeric tau and the reduction of pathological TIA1 positive tau inclusions. In the current report, we used a novel tau propagation approach to test whether TIA1 is required for producing toxic tau oligomers and whether TIA1 reduction would provide protection against the spread of these oligomers. The approach used young PS19 P301S tau mice at an age at which neurodegeneration would normally not yet occur and seeding oligomeric or fibrillar tau by injection into hippocampal CA1 region. We find that propagation of exogenous tau oligomers (but not fibrils) across the brain drives neurodegeneration in this model. We demonstrate that TIA1 reduction essentially brackets the pathophysiology of tau, being required for the production of tau oligomers, as well as regulating the response of neurons to propagated toxic tau oligomers. These results indicate that RNA binding proteins modulate the pathophysiology of tau at multiple levels and provide insights into possible therapeutic approaches to reduce the spread of neurodegeneration in tauopathy.
Collapse
|
36
|
Yamasaki TR, Holmes BB, Furman JL, Dhavale DD, Su BW, Song ES, Cairns NJ, Kotzbauer PT, Diamond MI. Parkinson's disease and multiple system atrophy have distinct α-synuclein seed characteristics. J Biol Chem 2018; 294:1045-1058. [PMID: 30478174 PMCID: PMC6341389 DOI: 10.1074/jbc.ra118.004471] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/20/2018] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology. Prion strains are aggregated conformers that stably propagate in vivo and cause disease with defined incubation times and patterns of neuropathology. Indeed, tau prions have been well defined, and research suggests that both α-syn and β-amyloid may also form strains. However, there is a lack of studies characterizing PD- versus MSA-derived α-syn strains or demonstrating stable propagation of these unique conformers between cells or animals. To fill this gap, we used an assay based on FRET that exploits a HEK293T "biosensor" cell line stably expressing α-syn (A53T)-CFP/YFP fusion proteins to detect α-syn seeds in brain extracts from PD and MSA patients. Both soluble and insoluble fractions of MSA extracts had robust seeding activity, whereas only the insoluble fractions of PD extracts displayed seeding activity. The morphology of MSA-seeded inclusions differed from PD-seeded inclusions. These differences persisted upon propagation of aggregation to second-generation biosensor cells. We conclude that PD and MSA feature α-syn conformers with very distinct biochemical properties that can be transmitted to α-syn monomers in a cell system. These findings are consistent with the idea that distinct α-syn strains underlie PD and MSA and offer possible directions for synucleinopathy diagnosis.
Collapse
Affiliation(s)
- Tritia R Yamasaki
- From the Department of Neurology, University of Kentucky, Lexington, Kentucky 40536,
| | | | | | | | - Bryant W Su
- From the Department of Neurology, University of Kentucky, Lexington, Kentucky 40536
| | - Eun-Suk Song
- From the Department of Neurology, University of Kentucky, Lexington, Kentucky 40536
| | - Nigel J Cairns
- the Departments of Neurology and.,Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, and
| | | | - Marc I Diamond
- the Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
37
|
Aviolat H, Nominé Y, Gioria S, Bonhoure A, Hoffmann D, Ruhlmann C, Nierengarten H, Ruffenach F, Villa P, Trottier Y, Klein FAC. SynAggreg: A Multifunctional High-Throughput Technology for Precision Study of Amyloid Aggregation and Systematic Discovery of Synergistic Inhibitor Compounds. J Mol Biol 2018; 430:5257-5279. [PMID: 30266595 DOI: 10.1016/j.jmb.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022]
Abstract
Numerous proteins can coalesce into amyloid self-assemblies, which are responsible for a class of diseases called amyloidoses, but which can also fulfill important biological functions and are of great interest for biotechnology. Amyloid aggregation is a complex multi-step process, poorly prone to detailed structural studies. Therefore, small molecules interacting with amyloids are often used as tools to probe the amyloid aggregation pathway and in some cases to treat amyloidoses as they prevent pathogenic protein aggregation. Here, we report on SynAggreg, an in vitro high-throughput (HT) platform dedicated to the precision study of amyloid aggregation and the effect of modulator compounds. SynAggreg relies on an accurate bi-fluorescent amyloid-tracer readout that overcomes some limitations of existing HT methods. It allows addressing diverse aspects of aggregation modulation that are critical for pathomechanistic studies, such as the specificity of compounds toward various amyloids and their effects on aggregation kinetics, as well as the co-assembly propensity of distinct amyloids and the influence of prion-like seeding on self-assembly. Furthermore, SynAggreg is the first HT technology that integrates tailored methodology to systematically identify synergistic compound combinations-an emerging strategy to improve fatal amyloidoses by targeting multiple steps of the aggregation pathway. To this end, we apply analytical combinatorial scores to rank the inhibition efficiency of couples of compounds and to readily detect synergism. Finally, the SynAggreg platform should be suited for the characterization of a broad class of amyloids, whether of interest for drug development purposes, for fundamental research on amyloid functions, or for biotechnological applications.
Collapse
Affiliation(s)
- Hubert Aviolat
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Yves Nominé
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Sophie Gioria
- University of Strasbourg, Strasbourg, France; Integrative Biological Chemistry Platform of Strasbourg, Illkirch, France
| | - Anna Bonhoure
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - David Hoffmann
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Christine Ruhlmann
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Hélène Nierengarten
- University of Strasbourg, Strasbourg, France; Institut de Chimie de Strasbourg, UMR7177, Strasbourg, France
| | - Frank Ruffenach
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Pascal Villa
- University of Strasbourg, Strasbourg, France; Integrative Biological Chemistry Platform of Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMS 3286, Illkirch, France
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France.
| | - Fabrice A C Klein
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France.
| |
Collapse
|
38
|
Muskelin Coordinates PrP C Lysosome versus Exosome Targeting and Impacts Prion Disease Progression. Neuron 2018; 99:1155-1169.e9. [PMID: 30174115 DOI: 10.1016/j.neuron.2018.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
Cellular prion protein (PrPC) modulates cell adhesion and signaling in the brain. Conversion to its infectious isoform causes neurodegeneration, including Creutzfeldt-Jakob disease in humans. PrPC undergoes rapid plasma membrane turnover and extracellular release via exosomes. However, the intracellular transport of PrPC and its potential impact on prion disease progression is barely understood. Here we identify critical components of PrPC trafficking that also link intracellular and extracellular PrPC turnover. PrPC associates with muskelin, dynein, and KIF5C at transport vesicles. Notably, muskelin coordinates bidirectional PrPC transport and facilitates lysosomal degradation over exosomal PrPC release. Muskelin gene knockout consequently causes PrPC accumulation at the neuronal surface and on secreted exosomes. Moreover, prion disease onset is accelerated following injection of pathogenic prions into muskelin knockout mice. Our data identify an essential checkpoint in PrPC turnover. They propose a novel connection between neuronal intracellular lysosome targeting and extracellular exosome trafficking, relevant to the pathogenesis of neurodegenerative conditions.
Collapse
|
39
|
Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X, Goodarzi M, Pappu RV, Colby DW, Mirzaei H, Joachimiak LA, Diamond MI. Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 2018; 7:36584. [PMID: 29988016 PMCID: PMC6039173 DOI: 10.7554/elife.36584] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Tauopathies feature progressive accumulation of tau amyloids. Pathology may begin when these amplify from a protein template, or seed, whose structure is unknown. We have purified and characterized distinct forms of tau monomer—inert (Mi) and seed-competent (Ms). Recombinant Ms triggered intracellular tau aggregation, induced tau fibrillization in vitro, and self-assembled. Ms from Alzheimer’s disease also seeded aggregation and self-assembled in vitro to form seed-competent multimers. We used crosslinking with mass spectrometry to probe structural differences in Mi vs. Ms. Crosslinks informed models of local peptide structure within the repeat domain which suggest relative inaccessibility of residues that drive aggregation (VQIINK/VQIVYK) in Mi, and exposure in Ms. Limited proteolysis supported this idea. Although tau monomer has been considered to be natively unstructured, our findings belie this assumption and suggest that initiation of pathological aggregation could begin with conversion of tau monomer from an inert to a seed-competent form. When doctors perform autopsies to look at the brain tissue of people with Alzheimer’s disease, they find toxic buildups of certain proteins – in particular, a protein called tau – in structures called ‘aggregates’. People with more severe dementia have more tau aggregates in their brain. Aggregates form when individual proteins stick together in repetitive patterns, much like the way a single Lego block might attach to another identical one. Like all proteins, tau is built from a string of amino acids that folds into a specific shape. Normally folded tau proteins do not form aggregates. It was not clear that an individual tau protein had two distinct forms—structures associated with health (“good”) or disease (“bad”). Mirbaha et al. have now studied the folding pattern of purified tau proteins with a sophisticated technology called mass spectrometry. This technique can measure changes in tiny amounts of protein. Some of the purified proteins had been extracted from human brains (from people with and without Alzheimer’s). To detect which of the proteins were toxic, Mirbaha et al. also grew simple human cells in a dish that were designed to react specifically to the bad forms of tau. This allowed the good and bad forms of tau to be isolated. Mirbaha et al. discovered that in the good form of tau the parts of the protein that allow it to stick to itself are hidden, folded inside. By contrast, the bad form of tau exposes the parts that allow it to aggregate, enabling the protein to build upon itself to form a large, toxic assembly. The shape-shifting concept established by Mirbaha et al. might apply to other proteins that form toxic aggregates. This could help us to better understand how many other neurodegenerative diseases develop and progress. Recognizing that the shapes that tau forms can be categorized as either ‘good’ or ‘bad’ may also help to develop new treatments for Alzheimer’s disease. Drugs could be designed to stabilize the good form of tau, or to help remove the bad form from the brain. Furthermore, if the shape-shift described by Mirbaha et al. can be measured early enough in patients, it may allow treatments for Alzheimer’s before people have developed any detectable symptoms.
Collapse
Affiliation(s)
- Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, United States
| | - Dailu Chen
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, United States
| | - Olga A Morazova
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Kiersten M Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, United States
| | - Apurwa M Sharma
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xiaohua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mohammad Goodarzi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, United States
| | - David W Colby
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
40
|
Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer's disease and PART. Acta Neuropathol 2018; 136:57-67. [PMID: 29752551 PMCID: PMC6015098 DOI: 10.1007/s00401-018-1855-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by accumulation of tau neurofibrillary tangles (NFTs) and, according to the prion model, transcellular propagation of pathological "seeds" may underlie its progression. Staging of NFT pathology with phospho-tau antibody is useful to classify AD and primary age-related tauopathy (PART) cases. The locus coeruleus (LC) shows the earliest phospho-tau signal, whereas other studies suggest that pathology begins in the transentorhinal/entorhinal cortices (TRE/EC). The relationship of tau seeding activity, phospho-tau pathology, and progression of neurodegeneration remains obscure. Consequently, we employed an established cellular biosensor assay to quantify tau seeding activity in fixed human tissue, in parallel with AT8 phospho-tau staining of immediately adjacent sections. We studied four brain regions from each of n = 247 individuals across a range of disease stages. We detected the earliest and most robust seeding activity in the TRE/EC. The LC did not uniformly exhibit seeding activity until later NFT stages. We also detected seeding activity in the superior temporal gyrus (STG) and primary visual cortex (VC) at stages before NFTs and/or AT8-immunopositivity were detectable. AD and putative PART cases exhibited similar patterns of seeding activity that anticipated histopathology across all NFT stages. Our findings are consistent with the prion model and suggest that pathological seeding activity begins in the TRE/EC rather than in the LC. In the analysis of tauopathy, quantification of seeding activity may offer an important addition to classical histopathology.
Collapse
|
41
|
Taran O, Chen C, Omosun TO, Hsieh MC, Rha A, Goodwin JT, Mehta AK, Grover MA, Lynn DG. Expanding the informational chemistries of life: peptide/RNA networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0356. [PMID: 29133453 DOI: 10.1098/rsta.2016.0356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Olga Taran
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Chenrui Chen
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Tolulope O Omosun
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ming-Chien Hsieh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Allisandra Rha
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jay T Goodwin
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Anil K Mehta
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Martha A Grover
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David G Lynn
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
42
|
Falcon B, Noad J, McMahon H, Randow F, Goedert M. Galectin-8-mediated selective autophagy protects against seeded tau aggregation. J Biol Chem 2017; 293:2438-2451. [PMID: 29282296 PMCID: PMC5818177 DOI: 10.1074/jbc.m117.809293] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/23/2017] [Indexed: 01/19/2023] Open
Abstract
Assembled tau can transfer between cells and seed the aggregation of soluble tau. This process is thought to underlie the amplification and propagation of tau inclusions throughout the brain in neurodegenerative diseases, including Alzheimer's disease. An understanding of the mechanisms involved may provide strategies for limiting assembled tau propagation. Here, we sought to determine how assembled tau seeds gain access to the cytosol and whether this access triggers cellular defenses. We show that tau assemblies enter cells through clathrin-independent endocytosis and escape from damaged endomembranes into the cytosol, where they seed the aggregation of soluble tau. We also found that the danger receptor galectin-8 detects damaged endomembranes and activates autophagy through recruitment of the cargo receptor nuclear dot protein 52 (NDP52). Inhibition of galectin-8– and NDP52-dependent autophagy increased seeded tau aggregation, indicating that autophagy triggered by damaged endomembranes during the entry of assembled tau seeds protects against tau aggregation, in a manner similar to cellular defenses against cytosol-dwelling microorganisms. A second autophagy cargo receptor, p62, then targeted seeded tau aggregates. Our results reveal that by monitoring endomembrane integrity, cells reduce entry of tau seeds into the cytosol and thereby prevent seeded aggregation. The mechanisms described here may help inform the development of therapies aimed at inhibiting the propagation of protein assemblies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Falcon
- From the MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jessica Noad
- From the MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Harvey McMahon
- From the MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Felix Randow
- From the MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom, and
| | - Michel Goedert
- From the MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom, .,Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
43
|
Harvey ZH, Chen Y, Jarosz DF. Protein-Based Inheritance: Epigenetics beyond the Chromosome. Mol Cell 2017; 69:195-202. [PMID: 29153393 DOI: 10.1016/j.molcel.2017.10.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/01/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Epigenetics refers to changes in phenotype that are not rooted in DNA sequence. This phenomenon has largely been studied in the context of chromatin modification. Yet many epigenetic traits are instead linked to self-perpetuating changes in the individual or collective activity of proteins. Most such proteins are prions (e.g., [PSI+], [URE3], [SWI+], [MOT3+], [MPH1+], [LSB+], and [GAR+]), which have the capacity to adopt at least one conformation that self-templates over long biological timescales. This allows them to serve as protein-based epigenetic elements that are readily broadcast through mitosis and meiosis. In some circumstances, self-templating can fuel disease, but it also permits access to multiple activity states from the same polypeptide and transmission of that information across generations. Ensuing phenotypic changes allow genetically identical cells to express diverse and frequently adaptive phenotypes. Although long thought to be rare, protein-based epigenetic inheritance has now been uncovered in all domains of life.
Collapse
Affiliation(s)
- Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Yiwen Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Hsieh MC, Liang C, Mehta AK, Lynn DG, Grover MA. Multistep Conformation Selection in Amyloid Assembly. J Am Chem Soc 2017; 139:17007-17010. [PMID: 29111722 PMCID: PMC5709775 DOI: 10.1021/jacs.7b09362] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Defining pathways
for amyloid assembly could impact therapeutic
strategies for as many as 50 disease states. Here we show that amyloid
assembly is subject to different forces regulating nucleation and
propagation steps and provide evidence that the more global β-sheet/β-sheet
facial complementarity is a critical determinant for amyloid nucleation
and structural selection.
Collapse
Affiliation(s)
- Ming-Chien Hsieh
- Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Anil K Mehta
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David G Lynn
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Martha A Grover
- Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
45
|
Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain 2017; 140:2982-2992. [PMID: 29069396 DOI: 10.1093/brain/awx255] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/05/2017] [Indexed: 11/12/2022] Open
Abstract
Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative diseases, but also that tau pathology can manifest in healthy neural tissue transplanted into the brains of patients with two distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Cisbani
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Jeffrey H Kordower
- Department of Neurological Sciences and Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Thomas B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA.,Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
46
|
Abstract
In this review, supramolecular catalysis refers to the integration of the catalytic process with molecular self-assembly driven by noncovalent interactions, and dynamic assemblies are the assemblies that form and dissipate reversibly. Cells extensively employ supramolecular catalysis and dynamic assemblies for controlling their complex functions. The dynamic generation of supramolecular assemblies of small molecules has made considerable progress in the last decade, though the disassembly processes remain underexplored. Here, we discuss the regulation of dynamic assemblies via self-assembly and disassembly processes for therapeutics and diagnostics. We first briefly introduce the self-assembly and disassembly processes in the context of cells, which provide the rationale for designing approaches to control the assemblies. Then, we describe recent advances in designing and regulating the self-assembly and disassembly of small molecules, especially for molecular imaging and anticancer therapeutics. Finally, we provide a perspective on future directions of the research on supramolecular catalysis and dynamic assemblies for medicine.
Collapse
Affiliation(s)
- Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | | | | |
Collapse
|
47
|
There Is an Inclusion for That: Material Properties of Protein Granules Provide a Platform for Building Diverse Cellular Functions. Trends Biochem Sci 2017; 42:765-776. [DOI: 10.1016/j.tibs.2017.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/26/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022]
|
48
|
Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, Jackson RJ, Yull H, Keogh MJ, Wei W, Chinnery PF, Head MW, Ironside JW. Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol 2017; 134:221-240. [PMID: 28349199 PMCID: PMC5508038 DOI: 10.1007/s00401-017-1703-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
Human-to-human transmission of Creutzfeldt-Jakob disease (CJD) has occurred through medical procedures resulting in iatrogenic CJD (iCJD). One of the commonest causes of iCJD was the use of human pituitary-derived growth hormone (hGH) to treat primary or secondary growth hormone deficiency. As part of a comprehensive tissue-based analysis of the largest cohort yet collected (35 cases) of UK hGH-iCJD cases, we describe the clinicopathological phenotype of hGH-iCJD in the UK. In the 33/35 hGH-iCJD cases with sufficient paraffin-embedded tissue for full pathological examination, we report the accumulation of the amyloid beta (Aβ) protein associated with Alzheimer's disease (AD) in the brains and cerebral blood vessels in 18/33 hGH-iCJD patients and for the first time in 5/12 hGH recipients who died from causes other than CJD. Aβ accumulation was markedly less prevalent in age-matched patients who died from sporadic CJD and variant CJD. These results are consistent with the hypothesis that Aβ, which can accumulate in the pituitary gland, was present in the inoculated hGH preparations and had a seeding effect in the brains of around 50% of all hGH recipients, producing an AD-like neuropathology and cerebral amyloid angiopathy (CAA), regardless of whether CJD neuropathology had occurred. These findings indicate that Aβ seeding can occur independently and in the absence of the abnormal prion protein in the human brain. Our findings provide further evidence for the prion-like seeding properties of Aβ and give insights into the possibility of iatrogenic transmission of AD and CAA.
Collapse
Affiliation(s)
- Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Peter Adlard
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Suzanne Lowrie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret Le Grice
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Kimberley Burns
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Helen Yull
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael J Keogh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Wei Wei
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Mark W Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - James W Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
49
|
Victoria GS, Zurzolo C. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases. J Cell Biol 2017; 216:2633-2644. [PMID: 28724527 PMCID: PMC5584166 DOI: 10.1083/jcb.201701047] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/03/2017] [Accepted: 07/05/2017] [Indexed: 11/22/2022] Open
Abstract
Victoria and Zurzolo discuss current evidence for the emerging role of lysosomal damage and tunneling nanotubes in the intercellular propagation of prion and prion-like proteins in neurodegenerative disease. Progression of pathology in neurodegenerative diseases is hypothesized to be a non–cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a “donor cell” that is the source of misfolded aggregates to an “acceptor cell” in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer’s, Huntington’s, and Parkinson’s diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| |
Collapse
|
50
|
Hock EM, Polymenidou M. Prion-like propagation as a pathogenic principle in frontotemporal dementia. J Neurochem 2017; 138 Suppl 1:163-83. [PMID: 27502124 PMCID: PMC6680357 DOI: 10.1111/jnc.13668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/22/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia is a devastating neurodegenerative disease causing stark alterations in personality and language. Characterized by severe atrophy of the frontal and temporal brain lobes, frontotemporal dementia (FTD) shows extreme heterogeneity in clinical presentation, genetic causes, and pathological findings. Like most neurodegenerative diseases, the initial symptoms of FTD are subtle, but increase in severity over time, as the disease progresses. Clinical progression is paralleled by exacerbation of pathological findings and the involvement of broader brain regions, which currently lack mechanistic explanation. Yet, a flurry of studies indicate that protein aggregates accumulating in neurodegenerative diseases can act as propagating entities, amplifying their pathogenic conformation, in a way similar to infectious prions. In this prion‐centric view, FTD can be divided into three subtypes, TDP‐43 or FUS proteinopathy and tauopathy. Here, we review the current evidence that FTD‐linked pathology propagates in a prion‐like manner and discuss the implications of these findings for disease progression and heterogeneity.
Frontotemporal dementia (FTD) is a progressive neurodegenerative disease causing severe personality dysfunctions, characterized by profound heterogeneity. Accumulation of tau, TDP‐43 or FUS cytoplasmic aggregates characterize molecularly distinct and non‐overlapping FTD subtypes. Here, we discuss the current evidence suggesting that prion‐like propagation and cell‐to‐cell spread of each of these cytoplasmic aggregates may underlie disease progression and heterogeneity.
This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Eva-Maria Hock
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|